Properties

Label 165.4.j
Level $165$
Weight $4$
Character orbit 165.j
Rep. character $\chi_{165}(43,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $72$
Newform subspaces $1$
Sturm bound $96$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 165 = 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 165.j (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 55 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(96\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(165, [\chi])\).

Total New Old
Modular forms 152 72 80
Cusp forms 136 72 64
Eisenstein series 16 0 16

Trace form

\( 72 q - 32 q^{5} + 56 q^{11} - 48 q^{12} - 168 q^{15} - 1264 q^{16} + 760 q^{20} - 356 q^{22} + 224 q^{23} + 592 q^{25} - 240 q^{26} + 432 q^{31} + 228 q^{33} - 2592 q^{36} + 1104 q^{37} + 2072 q^{38} + 816 q^{42}+ \cdots - 4104 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(165, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
165.4.j.a 165.j 55.e $72$ $9.735$ None 165.4.j.a \(0\) \(0\) \(-32\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{4}^{\mathrm{old}}(165, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(165, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 2}\)