Defining parameters
Level: | \( N \) | \(=\) | \( 165 = 3 \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 165.w (of order \(20\) and degree \(8\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 55 \) |
Character field: | \(\Q(\zeta_{20})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(165, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 608 | 288 | 320 |
Cusp forms | 544 | 288 | 256 |
Eisenstein series | 64 | 0 | 64 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(165, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
165.4.w.a | $288$ | $9.735$ | None | \(0\) | \(0\) | \(32\) | \(-40\) |
Decomposition of \(S_{4}^{\mathrm{old}}(165, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(165, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 2}\)