Properties

Label 168.2.ba
Level 168168
Weight 22
Character orbit 168.ba
Rep. character χ168(5,)\chi_{168}(5,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 5656
Newform subspaces 33
Sturm bound 6464
Trace bound 33

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 168=2337 168 = 2^{3} \cdot 3 \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 168.ba (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 168 168
Character field: Q(ζ6)\Q(\zeta_{6})
Newform subspaces: 3 3
Sturm bound: 6464
Trace bound: 33
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M2(168,[χ])M_{2}(168, [\chi]).

Total New Old
Modular forms 72 72 0
Cusp forms 56 56 0
Eisenstein series 16 16 0

Trace form

56q2q48q72q96q1018q1220q1510q164q2212q24+8q2518q28+22q3012q316q33+4q368q3966q40+36q42++90q96+O(q100) 56 q - 2 q^{4} - 8 q^{7} - 2 q^{9} - 6 q^{10} - 18 q^{12} - 20 q^{15} - 10 q^{16} - 4 q^{22} - 12 q^{24} + 8 q^{25} - 18 q^{28} + 22 q^{30} - 12 q^{31} - 6 q^{33} + 4 q^{36} - 8 q^{39} - 66 q^{40} + 36 q^{42}+ \cdots + 90 q^{96}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(168,[χ])S_{2}^{\mathrm{new}}(168, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
168.2.ba.a 168.ba 168.aa 44 1.3411.341 Q(2,3)\Q(\sqrt{2}, \sqrt{-3}) Q(6)\Q(\sqrt{-6}) 168.2.ba.a 00 6-6 66 2-2 U(1)[D6]\mathrm{U}(1)[D_{6}] q+β1q2+(2β2)q3+2β2q4+q+\beta _{1}q^{2}+(-2-\beta _{2})q^{3}+2\beta _{2}q^{4}+\cdots
168.2.ba.b 168.ba 168.aa 44 1.3411.341 Q(2,3)\Q(\sqrt{2}, \sqrt{-3}) Q(6)\Q(\sqrt{-6}) 168.2.ba.a 00 66 6-6 2-2 U(1)[D6]\mathrm{U}(1)[D_{6}] q+β1q2+(2+β2)q3+2β2q4+(1+)q5+q+\beta _{1}q^{2}+(2+\beta _{2})q^{3}+2\beta _{2}q^{4}+(-1+\cdots)q^{5}+\cdots
168.2.ba.c 168.ba 168.aa 4848 1.3411.341 None 168.2.ba.c 00 00 00 4-4 SU(2)[C6]\mathrm{SU}(2)[C_{6}]