Defining parameters
Level: | \( N \) | \(=\) | \( 168 = 2^{3} \cdot 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 168.ba (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 168 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(64\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(168, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 72 | 72 | 0 |
Cusp forms | 56 | 56 | 0 |
Eisenstein series | 16 | 16 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(168, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
168.2.ba.a | $4$ | $1.341$ | \(\Q(\sqrt{2}, \sqrt{-3})\) | \(\Q(\sqrt{-6}) \) | \(0\) | \(-6\) | \(6\) | \(-2\) | \(q+\beta _{1}q^{2}+(-2-\beta _{2})q^{3}+2\beta _{2}q^{4}+\cdots\) |
168.2.ba.b | $4$ | $1.341$ | \(\Q(\sqrt{2}, \sqrt{-3})\) | \(\Q(\sqrt{-6}) \) | \(0\) | \(6\) | \(-6\) | \(-2\) | \(q+\beta _{1}q^{2}+(2+\beta _{2})q^{3}+2\beta _{2}q^{4}+(-1+\cdots)q^{5}+\cdots\) |
168.2.ba.c | $48$ | $1.341$ | None | \(0\) | \(0\) | \(0\) | \(-4\) |