Properties

Label 168.2.ba
Level $168$
Weight $2$
Character orbit 168.ba
Rep. character $\chi_{168}(5,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $56$
Newform subspaces $3$
Sturm bound $64$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 168.ba (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 168 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 3 \)
Sturm bound: \(64\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(168, [\chi])\).

Total New Old
Modular forms 72 72 0
Cusp forms 56 56 0
Eisenstein series 16 16 0

Trace form

\( 56 q - 2 q^{4} - 8 q^{7} - 2 q^{9} + O(q^{10}) \) \( 56 q - 2 q^{4} - 8 q^{7} - 2 q^{9} - 6 q^{10} - 18 q^{12} - 20 q^{15} - 10 q^{16} - 4 q^{22} - 12 q^{24} + 8 q^{25} - 18 q^{28} + 22 q^{30} - 12 q^{31} - 6 q^{33} + 4 q^{36} - 8 q^{39} - 66 q^{40} + 36 q^{42} - 8 q^{46} - 16 q^{49} - 48 q^{52} + 60 q^{54} + 4 q^{57} + 22 q^{58} - 8 q^{60} - 30 q^{63} + 4 q^{64} + 54 q^{66} + 42 q^{70} + 42 q^{72} - 36 q^{73} - 68 q^{78} - 36 q^{79} + 6 q^{81} + 48 q^{82} + 48 q^{84} - 24 q^{87} - 26 q^{88} + 48 q^{94} + 90 q^{96} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(168, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
168.2.ba.a 168.ba 168.aa $4$ $1.341$ \(\Q(\sqrt{2}, \sqrt{-3})\) \(\Q(\sqrt{-6}) \) 168.2.ba.a \(0\) \(-6\) \(6\) \(-2\) $\mathrm{U}(1)[D_{6}]$ \(q+\beta _{1}q^{2}+(-2-\beta _{2})q^{3}+2\beta _{2}q^{4}+\cdots\)
168.2.ba.b 168.ba 168.aa $4$ $1.341$ \(\Q(\sqrt{2}, \sqrt{-3})\) \(\Q(\sqrt{-6}) \) 168.2.ba.a \(0\) \(6\) \(-6\) \(-2\) $\mathrm{U}(1)[D_{6}]$ \(q+\beta _{1}q^{2}+(2+\beta _{2})q^{3}+2\beta _{2}q^{4}+(-1+\cdots)q^{5}+\cdots\)
168.2.ba.c 168.ba 168.aa $48$ $1.341$ None 168.2.ba.c \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{6}]$