Defining parameters
Level: | \( N \) | \(=\) | \( 168 = 2^{3} \cdot 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 168.q (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(64\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(168, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 80 | 8 | 72 |
Cusp forms | 48 | 8 | 40 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(168, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
168.2.q.a | $2$ | $1.341$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(-1\) | \(1\) | \(1\) | \(q-\zeta_{6}q^{3}+(1-\zeta_{6})q^{5}+(2-3\zeta_{6})q^{7}+\cdots\) |
168.2.q.b | $2$ | $1.341$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(1\) | \(-2\) | \(5\) | \(q+\zeta_{6}q^{3}+(-2+2\zeta_{6})q^{5}+(3-\zeta_{6})q^{7}+\cdots\) |
168.2.q.c | $4$ | $1.341$ | \(\Q(\sqrt{-3}, \sqrt{-19})\) | None | \(0\) | \(2\) | \(1\) | \(-6\) | \(q+(1-\beta _{2})q^{3}+(-1+2\beta _{1}+\beta _{2}-\beta _{3})q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(168, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(168, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 2}\)