Properties

Label 1680.2.f
Level $1680$
Weight $2$
Character orbit 1680.f
Rep. character $\chi_{1680}(881,\cdot)$
Character field $\Q$
Dimension $64$
Newform subspaces $12$
Sturm bound $768$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q\)
Newform subspaces: \( 12 \)
Sturm bound: \(768\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(11\), \(17\), \(41\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1680, [\chi])\).

Total New Old
Modular forms 408 64 344
Cusp forms 360 64 296
Eisenstein series 48 0 48

Trace form

\( 64 q - 4 q^{7} + 4 q^{21} + 64 q^{25} + 12 q^{39} - 56 q^{43} + 8 q^{49} + 28 q^{51} + 20 q^{63} + 40 q^{67} - 24 q^{79} + 8 q^{81} - 32 q^{93} + 84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1680, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1680.2.f.a 1680.f 21.c $2$ $13.415$ \(\Q(\sqrt{-3}) \) None 420.2.d.a \(0\) \(-3\) \(2\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-2+\zeta_{6})q^{3}+q^{5}+(-1-2\zeta_{6})q^{7}+\cdots\)
1680.2.f.b 1680.f 21.c $2$ $13.415$ \(\Q(\sqrt{-3}) \) None 105.2.b.a \(0\) \(0\) \(-2\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{3}-q^{5}+(-\beta-2)q^{7}-3 q^{9}+\cdots\)
1680.2.f.c 1680.f 21.c $2$ $13.415$ \(\Q(\sqrt{-3}) \) None 105.2.b.a \(0\) \(0\) \(2\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta q^{3}+q^{5}+(\beta-2)q^{7}-3 q^{9}+\cdots\)
1680.2.f.d 1680.f 21.c $2$ $13.415$ \(\Q(\sqrt{-3}) \) None 420.2.d.a \(0\) \(3\) \(-2\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+(2-\zeta_{6})q^{3}-q^{5}+(-3+2\zeta_{6})q^{7}+\cdots\)
1680.2.f.e 1680.f 21.c $4$ $13.415$ \(\Q(i, \sqrt{5})\) None 210.2.b.a \(0\) \(-2\) \(-4\) \(-6\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}+\beta _{2})q^{3}-q^{5}+(-1+\beta _{1}+2\beta _{2}+\cdots)q^{7}+\cdots\)
1680.2.f.f 1680.f 21.c $4$ $13.415$ \(\Q(i, \sqrt{5})\) None 420.2.d.c \(0\) \(-2\) \(-4\) \(6\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-1-\beta _{1})q^{3}-q^{5}+(1-\beta _{1}-\beta _{2}+\cdots)q^{7}+\cdots\)
1680.2.f.g 1680.f 21.c $4$ $13.415$ \(\Q(\sqrt{-3}, \sqrt{-11})\) None 105.2.b.c \(0\) \(-1\) \(4\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{3}+q^{5}+(2+\beta _{2})q^{7}+(1+\beta _{2}+\cdots)q^{9}+\cdots\)
1680.2.f.h 1680.f 21.c $4$ $13.415$ \(\Q(\sqrt{-3}, \sqrt{-11})\) None 105.2.b.c \(0\) \(1\) \(-4\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}-q^{5}+(2-\beta _{2})q^{7}+(1+\beta _{2}+\cdots)q^{9}+\cdots\)
1680.2.f.i 1680.f 21.c $4$ $13.415$ \(\Q(i, \sqrt{5})\) None 210.2.b.a \(0\) \(2\) \(4\) \(-6\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{1}-\beta _{2})q^{3}+q^{5}+(-1-2\beta _{2}+\cdots)q^{7}+\cdots\)
1680.2.f.j 1680.f 21.c $4$ $13.415$ \(\Q(i, \sqrt{5})\) None 420.2.d.c \(0\) \(2\) \(4\) \(6\) $\mathrm{SU}(2)[C_{2}]$ \(q+(1+\beta _{1})q^{3}+q^{5}+(1+\beta _{2}+\beta _{3})q^{7}+\cdots\)
1680.2.f.k 1680.f 21.c $16$ $13.415$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 840.2.f.a \(0\) \(0\) \(-16\) \(-2\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{3}q^{3}-q^{5}-\beta _{9}q^{7}+\beta _{7}q^{9}+\beta _{8}q^{11}+\cdots\)
1680.2.f.l 1680.f 21.c $16$ $13.415$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 840.2.f.a \(0\) \(0\) \(16\) \(-2\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{3}q^{3}+q^{5}-\beta _{4}q^{7}+\beta _{7}q^{9}+\beta _{8}q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1680, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1680, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(210, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(336, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(420, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(840, [\chi])\)\(^{\oplus 2}\)