Properties

Label 1680.2.fi
Level 16801680
Weight 22
Character orbit 1680.fi
Rep. character χ1680(451,)\chi_{1680}(451,\cdot)
Character field Q(ζ12)\Q(\zeta_{12})
Dimension 512512
Sturm bound 768768

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1680=24357 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1680.fi (of order 1212 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 112 112
Character field: Q(ζ12)\Q(\zeta_{12})
Sturm bound: 768768

Dimensions

The following table gives the dimensions of various subspaces of M2(1680,[χ])M_{2}(1680, [\chi]).

Total New Old
Modular forms 1568 512 1056
Cusp forms 1504 512 992
Eisenstein series 64 0 64

Trace form

512q8q4+16q11+32q14+8q168q1832q2232q23+64q2864q29+32q37+32q43+8q44+40q46+16q50+72q52+32q53+112q56++32q99+O(q100) 512 q - 8 q^{4} + 16 q^{11} + 32 q^{14} + 8 q^{16} - 8 q^{18} - 32 q^{22} - 32 q^{23} + 64 q^{28} - 64 q^{29} + 32 q^{37} + 32 q^{43} + 8 q^{44} + 40 q^{46} + 16 q^{50} + 72 q^{52} + 32 q^{53} + 112 q^{56}+ \cdots + 32 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(1680,[χ])S_{2}^{\mathrm{new}}(1680, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(1680,[χ])S_{2}^{\mathrm{old}}(1680, [\chi]) into lower level spaces

S2old(1680,[χ]) S_{2}^{\mathrm{old}}(1680, [\chi]) \simeq S2new(112,[χ])S_{2}^{\mathrm{new}}(112, [\chi])4^{\oplus 4}\oplusS2new(336,[χ])S_{2}^{\mathrm{new}}(336, [\chi])2^{\oplus 2}\oplusS2new(560,[χ])S_{2}^{\mathrm{new}}(560, [\chi])2^{\oplus 2}