Defining parameters
Level: | \( N \) | \(=\) | \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1680.bl (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 20 \) |
Character field: | \(\Q(i)\) | ||
Sturm bound: | \(1536\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(1680, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2352 | 216 | 2136 |
Cusp forms | 2256 | 216 | 2040 |
Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(1680, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{4}^{\mathrm{old}}(1680, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(1680, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(240, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(420, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(560, [\chi])\)\(^{\oplus 2}\)