Defining parameters
Level: | \( N \) | \(=\) | \( 169 = 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 169.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(30\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(169))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 21 | 19 | 2 |
Cusp forms | 8 | 8 | 0 |
Eisenstein series | 13 | 11 | 2 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(13\) | Dim |
---|---|
\(+\) | \(3\) |
\(-\) | \(5\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(169))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 13 | |||||||
169.2.a.a | $2$ | $1.349$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(4\) | \(0\) | \(0\) | $-$ | \(q+\beta q^{2}+2q^{3}+q^{4}-\beta q^{5}+2\beta q^{6}+\cdots\) | |
169.2.a.b | $3$ | $1.349$ | \(\Q(\zeta_{14})^+\) | None | \(-2\) | \(-2\) | \(-4\) | \(-3\) | $+$ | \(q+(-1-\beta _{2})q^{2}+(-\beta _{1}+\beta _{2})q^{3}+(\beta _{1}+\cdots)q^{4}+\cdots\) | |
169.2.a.c | $3$ | $1.349$ | \(\Q(\zeta_{14})^+\) | None | \(2\) | \(-2\) | \(4\) | \(3\) | $-$ | \(q+(1-\beta _{1})q^{2}+(-1-\beta _{2})q^{3}+(1-2\beta _{1}+\cdots)q^{4}+\cdots\) |