Defining parameters
Level: | \( N \) | \(=\) | \( 17 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 17.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(9\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(17))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 8 | 6 | 2 |
Cusp forms | 6 | 6 | 0 |
Eisenstein series | 2 | 0 | 2 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(17\) | Dim |
---|---|
\(+\) | \(2\) |
\(-\) | \(4\) |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(17))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 17 | |||||||
17.6.a.a | $1$ | $2.727$ | \(\Q\) | None | \(-6\) | \(10\) | \(-72\) | \(-196\) | $+$ | \(q-6q^{2}+10q^{3}+4q^{4}-72q^{5}-60q^{6}+\cdots\) | |
17.6.a.b | $1$ | $2.727$ | \(\Q\) | None | \(1\) | \(-18\) | \(-16\) | \(28\) | $+$ | \(q+q^{2}-18q^{3}-31q^{4}-2^{4}q^{5}-18q^{6}+\cdots\) | |
17.6.a.c | $4$ | $2.727$ | 4.4.5416116.1 | None | \(3\) | \(28\) | \(80\) | \(284\) | $-$ | \(q+(1+\beta _{1})q^{2}+(7+\beta _{1}-\beta _{3})q^{3}+(18+\cdots)q^{4}+\cdots\) |