Properties

Label 17.6.a
Level $17$
Weight $6$
Character orbit 17.a
Rep. character $\chi_{17}(1,\cdot)$
Character field $\Q$
Dimension $6$
Newform subspaces $3$
Sturm bound $9$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 17 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 17.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(9\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(17))\).

Total New Old
Modular forms 8 6 2
Cusp forms 6 6 0
Eisenstein series 2 0 2

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(17\)Dim
\(+\)\(2\)
\(-\)\(4\)

Trace form

\( 6 q - 2 q^{2} + 20 q^{3} + 42 q^{4} - 8 q^{5} + 106 q^{6} + 116 q^{7} - 66 q^{8} + 6 q^{9} - 262 q^{10} - 100 q^{11} - 586 q^{12} + 412 q^{13} - 472 q^{14} - 1176 q^{15} - 1166 q^{16} + 578 q^{17} + 1682 q^{18}+ \cdots - 310948 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(17))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 17
17.6.a.a 17.a 1.a $1$ $2.727$ \(\Q\) None 17.6.a.a \(-6\) \(10\) \(-72\) \(-196\) $+$ $\mathrm{SU}(2)$ \(q-6q^{2}+10q^{3}+4q^{4}-72q^{5}-60q^{6}+\cdots\)
17.6.a.b 17.a 1.a $1$ $2.727$ \(\Q\) None 17.6.a.b \(1\) \(-18\) \(-16\) \(28\) $+$ $\mathrm{SU}(2)$ \(q+q^{2}-18q^{3}-31q^{4}-2^{4}q^{5}-18q^{6}+\cdots\)
17.6.a.c 17.a 1.a $4$ $2.727$ 4.4.5416116.1 None 17.6.a.c \(3\) \(28\) \(80\) \(284\) $-$ $\mathrm{SU}(2)$ \(q+(1+\beta _{1})q^{2}+(7+\beta _{1}-\beta _{3})q^{3}+(18+\cdots)q^{4}+\cdots\)