Properties

Label 170.2
Level 170
Weight 2
Dimension 265
Nonzero newspaces 10
Newform subspaces 30
Sturm bound 3456
Trace bound 10

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 170 = 2 \cdot 5 \cdot 17 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 10 \)
Newform subspaces: \( 30 \)
Sturm bound: \(3456\)
Trace bound: \(10\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(170))\).

Total New Old
Modular forms 992 265 727
Cusp forms 737 265 472
Eisenstein series 255 0 255

Trace form

\( 265 q + q^{2} + 4 q^{3} + q^{4} + q^{5} + 4 q^{6} + 8 q^{7} + q^{8} + 13 q^{9} - 3 q^{10} - 20 q^{11} - 12 q^{12} - 18 q^{13} - 24 q^{14} - 44 q^{15} - 7 q^{16} - 15 q^{17} - 51 q^{18} - 12 q^{19} - 3 q^{20}+ \cdots + 108 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(170))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
170.2.a \(\chi_{170}(1, \cdot)\) 170.2.a.a 1 1
170.2.a.b 1
170.2.a.c 1
170.2.a.d 1
170.2.a.e 1
170.2.a.f 2
170.2.b \(\chi_{170}(101, \cdot)\) 170.2.b.a 2 1
170.2.b.b 2
170.2.b.c 2
170.2.c \(\chi_{170}(69, \cdot)\) 170.2.c.a 2 1
170.2.c.b 6
170.2.d \(\chi_{170}(169, \cdot)\) 170.2.d.a 2 1
170.2.d.b 2
170.2.d.c 4
170.2.g \(\chi_{170}(89, \cdot)\) 170.2.g.a 2 2
170.2.g.b 2
170.2.g.c 2
170.2.g.d 2
170.2.g.e 4
170.2.g.f 4
170.2.h \(\chi_{170}(21, \cdot)\) 170.2.h.a 4 2
170.2.h.b 8
170.2.k \(\chi_{170}(111, \cdot)\) 170.2.k.a 8 4
170.2.k.b 16
170.2.n \(\chi_{170}(9, \cdot)\) 170.2.n.a 20 4
170.2.n.b 20
170.2.o \(\chi_{170}(3, \cdot)\) 170.2.o.a 32 8
170.2.o.b 40
170.2.r \(\chi_{170}(23, \cdot)\) 170.2.r.a 32 8
170.2.r.b 40

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(170))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(170)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(34))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(85))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(170))\)\(^{\oplus 1}\)