Properties

Label 170.2
Level 170
Weight 2
Dimension 265
Nonzero newspaces 10
Newform subspaces 30
Sturm bound 3456
Trace bound 10

Downloads

Learn more

Defining parameters

Level: N N = 170=2517 170 = 2 \cdot 5 \cdot 17
Weight: k k = 2 2
Nonzero newspaces: 10 10
Newform subspaces: 30 30
Sturm bound: 34563456
Trace bound: 1010

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ1(170))M_{2}(\Gamma_1(170)).

Total New Old
Modular forms 992 265 727
Cusp forms 737 265 472
Eisenstein series 255 0 255

Trace form

265q+q2+4q3+q4+q5+4q6+8q7+q8+13q93q1020q1112q1218q1324q1444q157q1615q1751q1812q193q20++108q99+O(q100) 265 q + q^{2} + 4 q^{3} + q^{4} + q^{5} + 4 q^{6} + 8 q^{7} + q^{8} + 13 q^{9} - 3 q^{10} - 20 q^{11} - 12 q^{12} - 18 q^{13} - 24 q^{14} - 44 q^{15} - 7 q^{16} - 15 q^{17} - 51 q^{18} - 12 q^{19} - 3 q^{20}+ \cdots + 108 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ1(170))S_{2}^{\mathrm{new}}(\Gamma_1(170))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
170.2.a χ170(1,)\chi_{170}(1, \cdot) 170.2.a.a 1 1
170.2.a.b 1
170.2.a.c 1
170.2.a.d 1
170.2.a.e 1
170.2.a.f 2
170.2.b χ170(101,)\chi_{170}(101, \cdot) 170.2.b.a 2 1
170.2.b.b 2
170.2.b.c 2
170.2.c χ170(69,)\chi_{170}(69, \cdot) 170.2.c.a 2 1
170.2.c.b 6
170.2.d χ170(169,)\chi_{170}(169, \cdot) 170.2.d.a 2 1
170.2.d.b 2
170.2.d.c 4
170.2.g χ170(89,)\chi_{170}(89, \cdot) 170.2.g.a 2 2
170.2.g.b 2
170.2.g.c 2
170.2.g.d 2
170.2.g.e 4
170.2.g.f 4
170.2.h χ170(21,)\chi_{170}(21, \cdot) 170.2.h.a 4 2
170.2.h.b 8
170.2.k χ170(111,)\chi_{170}(111, \cdot) 170.2.k.a 8 4
170.2.k.b 16
170.2.n χ170(9,)\chi_{170}(9, \cdot) 170.2.n.a 20 4
170.2.n.b 20
170.2.o χ170(3,)\chi_{170}(3, \cdot) 170.2.o.a 32 8
170.2.o.b 40
170.2.r χ170(23,)\chi_{170}(23, \cdot) 170.2.r.a 32 8
170.2.r.b 40

Decomposition of S2old(Γ1(170))S_{2}^{\mathrm{old}}(\Gamma_1(170)) into lower level spaces