Defining parameters
Level: | \( N \) | \(=\) | \( 1700 = 2^{2} \cdot 5^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1700.e (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(540\) | ||
Trace bound: | \(9\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1700, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 288 | 24 | 264 |
Cusp forms | 252 | 24 | 228 |
Eisenstein series | 36 | 0 | 36 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1700, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1700.2.e.a | $2$ | $13.575$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+i q^{3}+i q^{7}+2 q^{9}-i q^{13}+i q^{17}+\cdots\) |
1700.2.e.b | $2$ | $13.575$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-4 i q^{7}+3 q^{9}+2 q^{11}+6 i q^{13}+\cdots\) |
1700.2.e.c | $4$ | $13.575$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-\beta_{2}+\beta_1)q^{3}+(-\beta_{2}+\beta_1)q^{7}+\cdots\) |
1700.2.e.d | $6$ | $13.575$ | 6.0.2611456.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{2}q^{3}-\beta _{2}q^{7}+(-2+\beta _{1}+\beta _{3}+\cdots)q^{9}+\cdots\) |
1700.2.e.e | $10$ | $13.575$ | \(\mathbb{Q}[x]/(x^{10} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{3}-\beta _{8}q^{7}+(-3+\beta _{4}-\beta _{6}+\cdots)q^{9}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1700, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1700, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(170, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(340, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(425, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(850, [\chi])\)\(^{\oplus 2}\)