Properties

Label 1700.2.e
Level $1700$
Weight $2$
Character orbit 1700.e
Rep. character $\chi_{1700}(749,\cdot)$
Character field $\Q$
Dimension $24$
Newform subspaces $5$
Sturm bound $540$
Trace bound $9$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1700 = 2^{2} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1700.e (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(540\)
Trace bound: \(9\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1700, [\chi])\).

Total New Old
Modular forms 288 24 264
Cusp forms 252 24 228
Eisenstein series 36 0 36

Trace form

\( 24 q - 36 q^{9} + 4 q^{11} - 16 q^{19} + 20 q^{21} - 4 q^{29} + 8 q^{31} - 8 q^{39} + 12 q^{41} - 52 q^{49} - 4 q^{51} - 8 q^{59} + 8 q^{61} - 64 q^{69} - 4 q^{71} + 40 q^{79} + 136 q^{81} - 56 q^{89} + 48 q^{91}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1700, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1700.2.e.a 1700.e 5.b $2$ $13.575$ \(\Q(\sqrt{-1}) \) None 1700.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+i q^{7}+2 q^{9}-i q^{13}+i q^{17}+\cdots\)
1700.2.e.b 1700.e 5.b $2$ $13.575$ \(\Q(\sqrt{-1}) \) None 340.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-4 i q^{7}+3 q^{9}+2 q^{11}+6 i q^{13}+\cdots\)
1700.2.e.c 1700.e 5.b $4$ $13.575$ \(\Q(\zeta_{12})\) None 68.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta_{2}+\beta_1)q^{3}+(-\beta_{2}+\beta_1)q^{7}+\cdots\)
1700.2.e.d 1700.e 5.b $6$ $13.575$ 6.0.2611456.1 None 340.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{3}-\beta _{2}q^{7}+(-2+\beta _{1}+\beta _{3}+\cdots)q^{9}+\cdots\)
1700.2.e.e 1700.e 5.b $10$ $13.575$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 1700.2.a.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}-\beta _{8}q^{7}+(-3+\beta _{4}-\beta _{6}+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1700, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1700, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(170, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(340, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(425, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(850, [\chi])\)\(^{\oplus 2}\)