Properties

Label 171.1.o
Level $171$
Weight $1$
Character orbit 171.o
Rep. character $\chi_{171}(94,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $4$
Newform subspaces $1$
Sturm bound $20$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 171.o (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 171 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(20\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(171, [\chi])\).

Total New Old
Modular forms 8 8 0
Cusp forms 4 4 0
Eisenstein series 4 4 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 0 4 0 0

Trace form

\( 4 q - 2 q^{5} - 2 q^{6} - 2 q^{7} - 4 q^{9} + 2 q^{11} + 2 q^{16} + 2 q^{23} + 4 q^{24} - 4 q^{26} + 4 q^{30} + 4 q^{35} - 2 q^{38} - 2 q^{39} - 2 q^{42} - 2 q^{43} + 2 q^{45} - 2 q^{47} + 2 q^{54} - 4 q^{55}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(171, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
171.1.o.a 171.o 171.o $4$ $0.085$ \(\Q(\zeta_{12})\) $A_{4}$ None None 171.1.o.a \(0\) \(0\) \(-2\) \(-2\) \(q+\zeta_{12}^{5}q^{2}+\zeta_{12}^{3}q^{3}+\zeta_{12}^{4}q^{5}+\cdots\)