Defining parameters
Level: | \( N \) | \(=\) | \( 171 = 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 171.o (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 171 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(20\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(171, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 8 | 8 | 0 |
Cusp forms | 4 | 4 | 0 |
Eisenstein series | 4 | 4 | 0 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 0 | 4 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(171, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
171.1.o.a | $4$ | $0.085$ | \(\Q(\zeta_{12})\) | $A_{4}$ | None | None | \(0\) | \(0\) | \(-2\) | \(-2\) | \(q+\zeta_{12}^{5}q^{2}+\zeta_{12}^{3}q^{3}+\zeta_{12}^{4}q^{5}+\cdots\) |