Defining parameters
Level: | \( N \) | \(=\) | \( 171 = 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 171.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 57 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(40\) | ||
Trace bound: | \(4\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(171, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 24 | 8 | 16 |
Cusp forms | 16 | 8 | 8 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(171, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
171.2.d.a | $4$ | $1.365$ | \(\Q(\sqrt{-2}, \sqrt{19})\) | \(\Q(\sqrt{-19}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q-2q^{4}+\beta _{1}q^{5}+\beta _{3}q^{7}+(\beta _{1}+\beta _{2}+\cdots)q^{11}+\cdots\) |
171.2.d.b | $4$ | $1.365$ | \(\Q(\sqrt{-2}, \sqrt{5})\) | None | \(0\) | \(0\) | \(0\) | \(-8\) | \(q-\beta _{3}q^{2}+3q^{4}-\beta _{1}q^{5}-2q^{7}-\beta _{3}q^{8}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(171, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(171, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 2}\)