Properties

Label 171.2.f.c.163.4
Level $171$
Weight $2$
Character 171.163
Analytic conductor $1.365$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [171,2,Mod(64,171)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(171, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("171.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 171.f (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.36544187456\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.764411904.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 6x^{6} + 21x^{4} - 54x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 163.4
Root \(1.69185 - 0.370982i\) of defining polynomial
Character \(\chi\) \(=\) 171.163
Dual form 171.2.f.c.64.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.16721 - 2.02166i) q^{2} +(-1.72474 - 2.98735i) q^{4} +(0.524648 - 0.908716i) q^{5} -3.44949 q^{7} -3.38371 q^{8} +(-1.22474 - 2.12132i) q^{10} +5.71812 q^{11} +(0.500000 + 0.866025i) q^{13} +(-4.02627 + 6.97370i) q^{14} +(-0.500000 + 0.866025i) q^{16} +(-1.04930 + 1.81743i) q^{17} +(1.00000 + 4.24264i) q^{19} -3.61953 q^{20} +(6.67423 - 11.5601i) q^{22} +(-1.80977 - 3.13461i) q^{23} +(1.94949 + 3.37662i) q^{25} +2.33441 q^{26} +(5.94949 + 10.3048i) q^{28} +(3.61953 + 6.26922i) q^{29} -9.44949 q^{31} +(-2.21650 - 3.83909i) q^{32} +(2.44949 + 4.24264i) q^{34} +(-1.80977 + 3.13461i) q^{35} +3.89898 q^{37} +(9.74439 + 2.93038i) q^{38} +(-1.77526 + 3.07483i) q^{40} +(4.66883 - 8.08665i) q^{41} +(-3.17423 + 5.49794i) q^{43} +(-9.86230 - 17.0820i) q^{44} -8.44949 q^{46} +(-4.66883 - 8.08665i) q^{47} +4.89898 q^{49} +9.10183 q^{50} +(1.72474 - 2.98735i) q^{52} +(-0.524648 - 0.908716i) q^{53} +(3.00000 - 5.19615i) q^{55} +11.6721 q^{56} +16.8990 q^{58} +(-3.90836 + 6.76947i) q^{59} +(-2.50000 - 4.33013i) q^{61} +(-11.0295 + 19.1037i) q^{62} -12.3485 q^{64} +1.04930 q^{65} +(-0.174235 - 0.301783i) q^{67} +7.23907 q^{68} +(4.22474 + 7.31747i) q^{70} +(-3.61953 + 6.26922i) q^{71} +(-2.50000 + 4.33013i) q^{73} +(4.55092 - 7.88242i) q^{74} +(10.9495 - 10.3048i) q^{76} -19.7246 q^{77} +(-0.174235 + 0.301783i) q^{79} +(0.524648 + 0.908716i) q^{80} +(-10.8990 - 18.8776i) q^{82} -11.4362 q^{83} +(1.10102 + 1.90702i) q^{85} +(7.40998 + 12.8345i) q^{86} -19.3485 q^{88} +(2.62324 + 4.54358i) q^{89} +(-1.72474 - 2.98735i) q^{91} +(-6.24277 + 10.8128i) q^{92} -21.7980 q^{94} +(4.38000 + 1.31718i) q^{95} +(-1.55051 + 2.68556i) q^{97} +(5.71812 - 9.90408i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{4} - 8 q^{7} + 4 q^{13} - 4 q^{16} + 8 q^{19} + 24 q^{22} - 4 q^{25} + 28 q^{28} - 56 q^{31} - 8 q^{37} - 24 q^{40} + 4 q^{43} - 48 q^{46} + 4 q^{52} + 24 q^{55} + 96 q^{58} - 20 q^{61} - 40 q^{64}+ \cdots - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/171\mathbb{Z}\right)^\times\).

\(n\) \(20\) \(154\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.16721 2.02166i 0.825340 1.42953i −0.0763191 0.997083i \(-0.524317\pi\)
0.901659 0.432447i \(-0.142350\pi\)
\(3\) 0 0
\(4\) −1.72474 2.98735i −0.862372 1.49367i
\(5\) 0.524648 0.908716i 0.234630 0.406390i −0.724535 0.689238i \(-0.757946\pi\)
0.959165 + 0.282847i \(0.0912790\pi\)
\(6\) 0 0
\(7\) −3.44949 −1.30378 −0.651892 0.758312i \(-0.726025\pi\)
−0.651892 + 0.758312i \(0.726025\pi\)
\(8\) −3.38371 −1.19632
\(9\) 0 0
\(10\) −1.22474 2.12132i −0.387298 0.670820i
\(11\) 5.71812 1.72408 0.862040 0.506841i \(-0.169187\pi\)
0.862040 + 0.506841i \(0.169187\pi\)
\(12\) 0 0
\(13\) 0.500000 + 0.866025i 0.138675 + 0.240192i 0.926995 0.375073i \(-0.122382\pi\)
−0.788320 + 0.615265i \(0.789049\pi\)
\(14\) −4.02627 + 6.97370i −1.07607 + 1.86380i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −1.04930 + 1.81743i −0.254491 + 0.440792i −0.964757 0.263141i \(-0.915241\pi\)
0.710266 + 0.703934i \(0.248575\pi\)
\(18\) 0 0
\(19\) 1.00000 + 4.24264i 0.229416 + 0.973329i
\(20\) −3.61953 −0.809352
\(21\) 0 0
\(22\) 6.67423 11.5601i 1.42295 2.46462i
\(23\) −1.80977 3.13461i −0.377362 0.653611i 0.613315 0.789838i \(-0.289836\pi\)
−0.990678 + 0.136227i \(0.956502\pi\)
\(24\) 0 0
\(25\) 1.94949 + 3.37662i 0.389898 + 0.675323i
\(26\) 2.33441 0.457816
\(27\) 0 0
\(28\) 5.94949 + 10.3048i 1.12435 + 1.94743i
\(29\) 3.61953 + 6.26922i 0.672130 + 1.16416i 0.977299 + 0.211866i \(0.0679539\pi\)
−0.305168 + 0.952298i \(0.598713\pi\)
\(30\) 0 0
\(31\) −9.44949 −1.69718 −0.848589 0.529052i \(-0.822548\pi\)
−0.848589 + 0.529052i \(0.822548\pi\)
\(32\) −2.21650 3.83909i −0.391826 0.678662i
\(33\) 0 0
\(34\) 2.44949 + 4.24264i 0.420084 + 0.727607i
\(35\) −1.80977 + 3.13461i −0.305906 + 0.529845i
\(36\) 0 0
\(37\) 3.89898 0.640988 0.320494 0.947250i \(-0.396151\pi\)
0.320494 + 0.947250i \(0.396151\pi\)
\(38\) 9.74439 + 2.93038i 1.58075 + 0.475370i
\(39\) 0 0
\(40\) −1.77526 + 3.07483i −0.280692 + 0.486174i
\(41\) 4.66883 8.08665i 0.729149 1.26292i −0.228095 0.973639i \(-0.573250\pi\)
0.957244 0.289283i \(-0.0934170\pi\)
\(42\) 0 0
\(43\) −3.17423 + 5.49794i −0.484066 + 0.838427i −0.999833 0.0183020i \(-0.994174\pi\)
0.515766 + 0.856729i \(0.327507\pi\)
\(44\) −9.86230 17.0820i −1.48680 2.57521i
\(45\) 0 0
\(46\) −8.44949 −1.24581
\(47\) −4.66883 8.08665i −0.681019 1.17956i −0.974670 0.223646i \(-0.928204\pi\)
0.293652 0.955912i \(-0.405129\pi\)
\(48\) 0 0
\(49\) 4.89898 0.699854
\(50\) 9.10183 1.28719
\(51\) 0 0
\(52\) 1.72474 2.98735i 0.239179 0.414270i
\(53\) −0.524648 0.908716i −0.0720659 0.124822i 0.827741 0.561111i \(-0.189626\pi\)
−0.899807 + 0.436289i \(0.856293\pi\)
\(54\) 0 0
\(55\) 3.00000 5.19615i 0.404520 0.700649i
\(56\) 11.6721 1.55975
\(57\) 0 0
\(58\) 16.8990 2.21894
\(59\) −3.90836 + 6.76947i −0.508825 + 0.881310i 0.491123 + 0.871090i \(0.336587\pi\)
−0.999948 + 0.0102201i \(0.996747\pi\)
\(60\) 0 0
\(61\) −2.50000 4.33013i −0.320092 0.554416i 0.660415 0.750901i \(-0.270381\pi\)
−0.980507 + 0.196485i \(0.937047\pi\)
\(62\) −11.0295 + 19.1037i −1.40075 + 2.42617i
\(63\) 0 0
\(64\) −12.3485 −1.54356
\(65\) 1.04930 0.130149
\(66\) 0 0
\(67\) −0.174235 0.301783i −0.0212861 0.0368687i 0.855186 0.518321i \(-0.173443\pi\)
−0.876472 + 0.481452i \(0.840109\pi\)
\(68\) 7.23907 0.877866
\(69\) 0 0
\(70\) 4.22474 + 7.31747i 0.504954 + 0.874605i
\(71\) −3.61953 + 6.26922i −0.429560 + 0.744019i −0.996834 0.0795098i \(-0.974665\pi\)
0.567275 + 0.823529i \(0.307998\pi\)
\(72\) 0 0
\(73\) −2.50000 + 4.33013i −0.292603 + 0.506803i −0.974424 0.224716i \(-0.927855\pi\)
0.681822 + 0.731519i \(0.261188\pi\)
\(74\) 4.55092 7.88242i 0.529033 0.916313i
\(75\) 0 0
\(76\) 10.9495 10.3048i 1.25599 1.18204i
\(77\) −19.7246 −2.24783
\(78\) 0 0
\(79\) −0.174235 + 0.301783i −0.0196029 + 0.0339533i −0.875660 0.482927i \(-0.839574\pi\)
0.856058 + 0.516881i \(0.172907\pi\)
\(80\) 0.524648 + 0.908716i 0.0586574 + 0.101598i
\(81\) 0 0
\(82\) −10.8990 18.8776i −1.20359 2.08468i
\(83\) −11.4362 −1.25529 −0.627646 0.778499i \(-0.715981\pi\)
−0.627646 + 0.778499i \(0.715981\pi\)
\(84\) 0 0
\(85\) 1.10102 + 1.90702i 0.119422 + 0.206846i
\(86\) 7.40998 + 12.8345i 0.799039 + 1.38398i
\(87\) 0 0
\(88\) −19.3485 −2.06255
\(89\) 2.62324 + 4.54358i 0.278063 + 0.481619i 0.970903 0.239472i \(-0.0769744\pi\)
−0.692841 + 0.721091i \(0.743641\pi\)
\(90\) 0 0
\(91\) −1.72474 2.98735i −0.180802 0.313159i
\(92\) −6.24277 + 10.8128i −0.650854 + 1.12731i
\(93\) 0 0
\(94\) −21.7980 −2.24829
\(95\) 4.38000 + 1.31718i 0.449379 + 0.135139i
\(96\) 0 0
\(97\) −1.55051 + 2.68556i −0.157430 + 0.272678i −0.933941 0.357426i \(-0.883654\pi\)
0.776511 + 0.630104i \(0.216988\pi\)
\(98\) 5.71812 9.90408i 0.577618 1.00046i
\(99\) 0 0
\(100\) 6.72474 11.6476i 0.672474 1.16476i
\(101\) 1.04930 + 1.81743i 0.104409 + 0.180841i 0.913497 0.406847i \(-0.133372\pi\)
−0.809088 + 0.587688i \(0.800038\pi\)
\(102\) 0 0
\(103\) −3.44949 −0.339888 −0.169944 0.985454i \(-0.554359\pi\)
−0.169944 + 0.985454i \(0.554359\pi\)
\(104\) −1.69185 2.93038i −0.165900 0.287347i
\(105\) 0 0
\(106\) −2.44949 −0.237915
\(107\) 16.5767 1.60253 0.801266 0.598308i \(-0.204160\pi\)
0.801266 + 0.598308i \(0.204160\pi\)
\(108\) 0 0
\(109\) 4.44949 7.70674i 0.426184 0.738172i −0.570346 0.821404i \(-0.693191\pi\)
0.996530 + 0.0832323i \(0.0265243\pi\)
\(110\) −7.00324 12.1300i −0.667733 1.15655i
\(111\) 0 0
\(112\) 1.72474 2.98735i 0.162973 0.282278i
\(113\) −8.28836 −0.779703 −0.389852 0.920878i \(-0.627474\pi\)
−0.389852 + 0.920878i \(0.627474\pi\)
\(114\) 0 0
\(115\) −3.79796 −0.354162
\(116\) 12.4855 21.6256i 1.15925 2.00789i
\(117\) 0 0
\(118\) 9.12372 + 15.8028i 0.839907 + 1.45476i
\(119\) 3.61953 6.26922i 0.331802 0.574698i
\(120\) 0 0
\(121\) 21.6969 1.97245
\(122\) −11.6721 −1.05674
\(123\) 0 0
\(124\) 16.2980 + 28.2289i 1.46360 + 2.53503i
\(125\) 9.33766 0.835185
\(126\) 0 0
\(127\) −2.89898 5.02118i −0.257243 0.445558i 0.708259 0.705952i \(-0.249481\pi\)
−0.965502 + 0.260395i \(0.916147\pi\)
\(128\) −9.98022 + 17.2862i −0.882135 + 1.52790i
\(129\) 0 0
\(130\) 1.22474 2.12132i 0.107417 0.186052i
\(131\) 7.81671 13.5389i 0.682949 1.18290i −0.291127 0.956684i \(-0.594030\pi\)
0.974077 0.226219i \(-0.0726364\pi\)
\(132\) 0 0
\(133\) −3.44949 14.6349i −0.299109 1.26901i
\(134\) −0.813472 −0.0702732
\(135\) 0 0
\(136\) 3.55051 6.14966i 0.304454 0.527329i
\(137\) −7.81671 13.5389i −0.667827 1.15671i −0.978511 0.206197i \(-0.933891\pi\)
0.310684 0.950513i \(-0.399442\pi\)
\(138\) 0 0
\(139\) 1.17423 + 2.03383i 0.0995973 + 0.172508i 0.911518 0.411260i \(-0.134911\pi\)
−0.811921 + 0.583768i \(0.801578\pi\)
\(140\) 12.4855 1.05522
\(141\) 0 0
\(142\) 8.44949 + 14.6349i 0.709065 + 1.22814i
\(143\) 2.85906 + 4.95204i 0.239087 + 0.414110i
\(144\) 0 0
\(145\) 7.59592 0.630807
\(146\) 5.83604 + 10.1083i 0.482994 + 0.836570i
\(147\) 0 0
\(148\) −6.72474 11.6476i −0.552771 0.957427i
\(149\) 6.24277 10.8128i 0.511428 0.885819i −0.488485 0.872573i \(-0.662450\pi\)
0.999912 0.0132463i \(-0.00421655\pi\)
\(150\) 0 0
\(151\) −4.00000 −0.325515 −0.162758 0.986666i \(-0.552039\pi\)
−0.162758 + 0.986666i \(0.552039\pi\)
\(152\) −3.38371 14.3559i −0.274455 1.16441i
\(153\) 0 0
\(154\) −23.0227 + 39.8765i −1.85522 + 3.21334i
\(155\) −4.95765 + 8.58691i −0.398208 + 0.689717i
\(156\) 0 0
\(157\) 7.84847 13.5939i 0.626376 1.08492i −0.361897 0.932218i \(-0.617871\pi\)
0.988273 0.152697i \(-0.0487959\pi\)
\(158\) 0.406736 + 0.704487i 0.0323582 + 0.0560460i
\(159\) 0 0
\(160\) −4.65153 −0.367736
\(161\) 6.24277 + 10.8128i 0.491999 + 0.852168i
\(162\) 0 0
\(163\) −9.44949 −0.740141 −0.370071 0.929004i \(-0.620667\pi\)
−0.370071 + 0.929004i \(0.620667\pi\)
\(164\) −32.2102 −2.51519
\(165\) 0 0
\(166\) −13.3485 + 23.1202i −1.03604 + 1.79448i
\(167\) 9.62648 + 16.6736i 0.744919 + 1.29024i 0.950232 + 0.311542i \(0.100845\pi\)
−0.205313 + 0.978696i \(0.565821\pi\)
\(168\) 0 0
\(169\) 6.00000 10.3923i 0.461538 0.799408i
\(170\) 5.14048 0.394257
\(171\) 0 0
\(172\) 21.8990 1.66978
\(173\) −3.61953 + 6.26922i −0.275188 + 0.476640i −0.970183 0.242375i \(-0.922073\pi\)
0.694995 + 0.719015i \(0.255407\pi\)
\(174\) 0 0
\(175\) −6.72474 11.6476i −0.508343 0.880476i
\(176\) −2.85906 + 4.95204i −0.215510 + 0.373274i
\(177\) 0 0
\(178\) 12.2474 0.917985
\(179\) 0.577648 0.0431754 0.0215877 0.999767i \(-0.493128\pi\)
0.0215877 + 0.999767i \(0.493128\pi\)
\(180\) 0 0
\(181\) 10.4495 + 18.0990i 0.776704 + 1.34529i 0.933832 + 0.357713i \(0.116443\pi\)
−0.157127 + 0.987578i \(0.550223\pi\)
\(182\) −8.05254 −0.596894
\(183\) 0 0
\(184\) 6.12372 + 10.6066i 0.451447 + 0.781929i
\(185\) 2.04559 3.54307i 0.150395 0.260491i
\(186\) 0 0
\(187\) −6.00000 + 10.3923i −0.438763 + 0.759961i
\(188\) −16.1051 + 27.8948i −1.17458 + 2.03444i
\(189\) 0 0
\(190\) 7.77526 7.31747i 0.564076 0.530865i
\(191\) 5.71812 0.413749 0.206874 0.978367i \(-0.433671\pi\)
0.206874 + 0.978367i \(0.433671\pi\)
\(192\) 0 0
\(193\) −9.84847 + 17.0580i −0.708908 + 1.22787i 0.256354 + 0.966583i \(0.417479\pi\)
−0.965262 + 0.261282i \(0.915855\pi\)
\(194\) 3.61953 + 6.26922i 0.259867 + 0.450103i
\(195\) 0 0
\(196\) −8.44949 14.6349i −0.603535 1.04535i
\(197\) 14.5841 1.03908 0.519538 0.854447i \(-0.326104\pi\)
0.519538 + 0.854447i \(0.326104\pi\)
\(198\) 0 0
\(199\) −0.174235 0.301783i −0.0123512 0.0213928i 0.859784 0.510658i \(-0.170598\pi\)
−0.872135 + 0.489265i \(0.837265\pi\)
\(200\) −6.59651 11.4255i −0.466443 0.807904i
\(201\) 0 0
\(202\) 4.89898 0.344691
\(203\) −12.4855 21.6256i −0.876313 1.51782i
\(204\) 0 0
\(205\) −4.89898 8.48528i −0.342160 0.592638i
\(206\) −4.02627 + 6.97370i −0.280523 + 0.485881i
\(207\) 0 0
\(208\) −1.00000 −0.0693375
\(209\) 5.71812 + 24.2599i 0.395531 + 1.67810i
\(210\) 0 0
\(211\) 7.17423 12.4261i 0.493895 0.855451i −0.506081 0.862486i \(-0.668906\pi\)
0.999975 + 0.00703553i \(0.00223950\pi\)
\(212\) −1.80977 + 3.13461i −0.124295 + 0.215286i
\(213\) 0 0
\(214\) 19.3485 33.5125i 1.32263 2.29087i
\(215\) 3.33071 + 5.76896i 0.227152 + 0.393440i
\(216\) 0 0
\(217\) 32.5959 2.21276
\(218\) −10.3870 17.9907i −0.703493 1.21849i
\(219\) 0 0
\(220\) −20.6969 −1.39539
\(221\) −2.09859 −0.141166
\(222\) 0 0
\(223\) −0.174235 + 0.301783i −0.0116676 + 0.0202089i −0.871800 0.489862i \(-0.837047\pi\)
0.860133 + 0.510070i \(0.170381\pi\)
\(224\) 7.64580 + 13.2429i 0.510857 + 0.884830i
\(225\) 0 0
\(226\) −9.67423 + 16.7563i −0.643521 + 1.11461i
\(227\) −10.8586 −0.720711 −0.360355 0.932815i \(-0.617345\pi\)
−0.360355 + 0.932815i \(0.617345\pi\)
\(228\) 0 0
\(229\) −10.7980 −0.713549 −0.356775 0.934190i \(-0.616124\pi\)
−0.356775 + 0.934190i \(0.616124\pi\)
\(230\) −4.43300 + 7.67819i −0.292304 + 0.506285i
\(231\) 0 0
\(232\) −12.2474 21.2132i −0.804084 1.39272i
\(233\) 10.3870 17.9907i 0.680472 1.17861i −0.294365 0.955693i \(-0.595108\pi\)
0.974837 0.222919i \(-0.0715585\pi\)
\(234\) 0 0
\(235\) −9.79796 −0.639148
\(236\) 26.9637 1.75519
\(237\) 0 0
\(238\) −8.44949 14.6349i −0.547699 0.948643i
\(239\) −10.8586 −0.702384 −0.351192 0.936303i \(-0.614224\pi\)
−0.351192 + 0.936303i \(0.614224\pi\)
\(240\) 0 0
\(241\) 9.50000 + 16.4545i 0.611949 + 1.05993i 0.990912 + 0.134515i \(0.0429475\pi\)
−0.378963 + 0.925412i \(0.623719\pi\)
\(242\) 25.3248 43.8639i 1.62794 2.81968i
\(243\) 0 0
\(244\) −8.62372 + 14.9367i −0.552077 + 0.956226i
\(245\) 2.57024 4.45178i 0.164206 0.284414i
\(246\) 0 0
\(247\) −3.17423 + 2.98735i −0.201972 + 0.190080i
\(248\) 31.9743 2.03037
\(249\) 0 0
\(250\) 10.8990 18.8776i 0.689312 1.19392i
\(251\) −7.23907 12.5384i −0.456926 0.791419i 0.541871 0.840462i \(-0.317716\pi\)
−0.998797 + 0.0490430i \(0.984383\pi\)
\(252\) 0 0
\(253\) −10.3485 17.9241i −0.650603 1.12688i
\(254\) −13.5348 −0.849251
\(255\) 0 0
\(256\) 10.9495 + 18.9651i 0.684343 + 1.18532i
\(257\) −6.24277 10.8128i −0.389413 0.674484i 0.602957 0.797773i \(-0.293989\pi\)
−0.992371 + 0.123290i \(0.960656\pi\)
\(258\) 0 0
\(259\) −13.4495 −0.835711
\(260\) −1.80977 3.13461i −0.112237 0.194400i
\(261\) 0 0
\(262\) −18.2474 31.6055i −1.12733 1.95259i
\(263\) 12.9572 22.4425i 0.798975 1.38386i −0.121310 0.992615i \(-0.538709\pi\)
0.920284 0.391250i \(-0.127957\pi\)
\(264\) 0 0
\(265\) −1.10102 −0.0676352
\(266\) −33.6132 10.1083i −2.06096 0.619780i
\(267\) 0 0
\(268\) −0.601021 + 1.04100i −0.0367132 + 0.0635891i
\(269\) −7.76371 + 13.4471i −0.473362 + 0.819887i −0.999535 0.0304905i \(-0.990293\pi\)
0.526173 + 0.850378i \(0.323626\pi\)
\(270\) 0 0
\(271\) −8.89898 + 15.4135i −0.540575 + 0.936303i 0.458297 + 0.888799i \(0.348460\pi\)
−0.998871 + 0.0475032i \(0.984874\pi\)
\(272\) −1.04930 1.81743i −0.0636229 0.110198i
\(273\) 0 0
\(274\) −36.4949 −2.20474
\(275\) 11.1474 + 19.3079i 0.672215 + 1.16431i
\(276\) 0 0
\(277\) −18.6969 −1.12339 −0.561695 0.827344i \(-0.689851\pi\)
−0.561695 + 0.827344i \(0.689851\pi\)
\(278\) 5.48230 0.328807
\(279\) 0 0
\(280\) 6.12372 10.6066i 0.365963 0.633866i
\(281\) −6.24277 10.8128i −0.372413 0.645037i 0.617524 0.786552i \(-0.288136\pi\)
−0.989936 + 0.141515i \(0.954803\pi\)
\(282\) 0 0
\(283\) 3.10102 5.37113i 0.184337 0.319280i −0.759016 0.651072i \(-0.774320\pi\)
0.943353 + 0.331791i \(0.107653\pi\)
\(284\) 24.9711 1.48176
\(285\) 0 0
\(286\) 13.3485 0.789312
\(287\) −16.1051 + 27.8948i −0.950653 + 1.64658i
\(288\) 0 0
\(289\) 6.29796 + 10.9084i 0.370468 + 0.641670i
\(290\) 8.86601 15.3564i 0.520630 0.901758i
\(291\) 0 0
\(292\) 17.2474 1.00933
\(293\) 10.2810 0.600620 0.300310 0.953842i \(-0.402910\pi\)
0.300310 + 0.953842i \(0.402910\pi\)
\(294\) 0 0
\(295\) 4.10102 + 7.10318i 0.238771 + 0.413563i
\(296\) −13.1930 −0.766828
\(297\) 0 0
\(298\) −14.5732 25.2415i −0.844204 1.46220i
\(299\) 1.80977 3.13461i 0.104662 0.181279i
\(300\) 0 0
\(301\) 10.9495 18.9651i 0.631118 1.09313i
\(302\) −4.66883 + 8.08665i −0.268661 + 0.465334i
\(303\) 0 0
\(304\) −4.17423 1.25529i −0.239409 0.0719961i
\(305\) −5.24648 −0.300412
\(306\) 0 0
\(307\) 14.7980 25.6308i 0.844564 1.46283i −0.0414351 0.999141i \(-0.513193\pi\)
0.885999 0.463687i \(-0.153474\pi\)
\(308\) 34.0199 + 58.9242i 1.93846 + 3.35752i
\(309\) 0 0
\(310\) 11.5732 + 20.0454i 0.657314 + 1.13850i
\(311\) −23.4501 −1.32974 −0.664868 0.746961i \(-0.731512\pi\)
−0.664868 + 0.746961i \(0.731512\pi\)
\(312\) 0 0
\(313\) −1.55051 2.68556i −0.0876400 0.151797i 0.818873 0.573975i \(-0.194599\pi\)
−0.906513 + 0.422178i \(0.861266\pi\)
\(314\) −18.3216 31.7339i −1.03395 1.79085i
\(315\) 0 0
\(316\) 1.20204 0.0676201
\(317\) 5.19348 + 8.99536i 0.291695 + 0.505230i 0.974211 0.225641i \(-0.0724475\pi\)
−0.682516 + 0.730871i \(0.739114\pi\)
\(318\) 0 0
\(319\) 20.6969 + 35.8481i 1.15881 + 2.00711i
\(320\) −6.47860 + 11.2213i −0.362164 + 0.627287i
\(321\) 0 0
\(322\) 29.1464 1.62427
\(323\) −8.76001 2.63435i −0.487420 0.146579i
\(324\) 0 0
\(325\) −1.94949 + 3.37662i −0.108138 + 0.187301i
\(326\) −11.0295 + 19.1037i −0.610868 + 1.05805i
\(327\) 0 0
\(328\) −15.7980 + 27.3629i −0.872296 + 1.51086i
\(329\) 16.1051 + 27.8948i 0.887902 + 1.53789i
\(330\) 0 0
\(331\) −3.44949 −0.189601 −0.0948006 0.995496i \(-0.530221\pi\)
−0.0948006 + 0.995496i \(0.530221\pi\)
\(332\) 19.7246 + 34.1640i 1.08253 + 1.87499i
\(333\) 0 0
\(334\) 44.9444 2.45925
\(335\) −0.365647 −0.0199774
\(336\) 0 0
\(337\) −12.8485 + 22.2542i −0.699901 + 1.21226i 0.268600 + 0.963252i \(0.413439\pi\)
−0.968500 + 0.249012i \(0.919894\pi\)
\(338\) −14.0065 24.2599i −0.761852 1.31957i
\(339\) 0 0
\(340\) 3.79796 6.57826i 0.205973 0.356756i
\(341\) −54.0334 −2.92607
\(342\) 0 0
\(343\) 7.24745 0.391325
\(344\) 10.7407 18.6034i 0.579099 1.00303i
\(345\) 0 0
\(346\) 8.44949 + 14.6349i 0.454247 + 0.786780i
\(347\) 4.38000 7.58639i 0.235131 0.407259i −0.724180 0.689611i \(-0.757781\pi\)
0.959311 + 0.282352i \(0.0911148\pi\)
\(348\) 0 0
\(349\) −16.7980 −0.899174 −0.449587 0.893237i \(-0.648429\pi\)
−0.449587 + 0.893237i \(0.648429\pi\)
\(350\) −31.3967 −1.67822
\(351\) 0 0
\(352\) −12.6742 21.9524i −0.675539 1.17007i
\(353\) −19.7246 −1.04984 −0.524918 0.851153i \(-0.675904\pi\)
−0.524918 + 0.851153i \(0.675904\pi\)
\(354\) 0 0
\(355\) 3.79796 + 6.57826i 0.201575 + 0.349138i
\(356\) 9.04883 15.6730i 0.479587 0.830669i
\(357\) 0 0
\(358\) 0.674235 1.16781i 0.0356344 0.0617206i
\(359\) 7.23907 12.5384i 0.382063 0.661753i −0.609294 0.792945i \(-0.708547\pi\)
0.991357 + 0.131192i \(0.0418803\pi\)
\(360\) 0 0
\(361\) −17.0000 + 8.48528i −0.894737 + 0.446594i
\(362\) 48.7869 2.56418
\(363\) 0 0
\(364\) −5.94949 + 10.3048i −0.311838 + 0.540119i
\(365\) 2.62324 + 4.54358i 0.137307 + 0.237822i
\(366\) 0 0
\(367\) 10.1742 + 17.6223i 0.531091 + 0.919876i 0.999342 + 0.0362806i \(0.0115510\pi\)
−0.468251 + 0.883596i \(0.655116\pi\)
\(368\) 3.61953 0.188681
\(369\) 0 0
\(370\) −4.77526 8.27098i −0.248254 0.429988i
\(371\) 1.80977 + 3.13461i 0.0939584 + 0.162741i
\(372\) 0 0
\(373\) −30.6969 −1.58943 −0.794714 0.606985i \(-0.792379\pi\)
−0.794714 + 0.606985i \(0.792379\pi\)
\(374\) 14.0065 + 24.2599i 0.724258 + 1.25445i
\(375\) 0 0
\(376\) 15.7980 + 27.3629i 0.814718 + 1.41113i
\(377\) −3.61953 + 6.26922i −0.186415 + 0.322881i
\(378\) 0 0
\(379\) −3.44949 −0.177188 −0.0885942 0.996068i \(-0.528237\pi\)
−0.0885942 + 0.996068i \(0.528237\pi\)
\(380\) −3.61953 15.3564i −0.185678 0.787766i
\(381\) 0 0
\(382\) 6.67423 11.5601i 0.341484 0.591467i
\(383\) 4.95765 8.58691i 0.253324 0.438770i −0.711115 0.703076i \(-0.751809\pi\)
0.964439 + 0.264306i \(0.0851427\pi\)
\(384\) 0 0
\(385\) −10.3485 + 17.9241i −0.527407 + 0.913495i
\(386\) 22.9904 + 39.8206i 1.17018 + 2.02681i
\(387\) 0 0
\(388\) 10.6969 0.543055
\(389\) −6.24277 10.8128i −0.316521 0.548231i 0.663239 0.748408i \(-0.269181\pi\)
−0.979760 + 0.200177i \(0.935848\pi\)
\(390\) 0 0
\(391\) 7.59592 0.384142
\(392\) −16.5767 −0.837251
\(393\) 0 0
\(394\) 17.0227 29.4842i 0.857591 1.48539i
\(395\) 0.182824 + 0.316660i 0.00919885 + 0.0159329i
\(396\) 0 0
\(397\) 3.50000 6.06218i 0.175660 0.304252i −0.764730 0.644351i \(-0.777127\pi\)
0.940389 + 0.340099i \(0.110461\pi\)
\(398\) −0.813472 −0.0407756
\(399\) 0 0
\(400\) −3.89898 −0.194949
\(401\) 3.67253 6.36101i 0.183398 0.317654i −0.759638 0.650346i \(-0.774624\pi\)
0.943035 + 0.332692i \(0.107957\pi\)
\(402\) 0 0
\(403\) −4.72474 8.18350i −0.235356 0.407649i
\(404\) 3.61953 6.26922i 0.180079 0.311905i
\(405\) 0 0
\(406\) −58.2929 −2.89303
\(407\) 22.2948 1.10511
\(408\) 0 0
\(409\) −1.55051 2.68556i −0.0766678 0.132793i 0.825143 0.564925i \(-0.191095\pi\)
−0.901810 + 0.432132i \(0.857761\pi\)
\(410\) −22.8725 −1.12959
\(411\) 0 0
\(412\) 5.94949 + 10.3048i 0.293110 + 0.507682i
\(413\) 13.4818 23.3512i 0.663398 1.14904i
\(414\) 0 0
\(415\) −6.00000 + 10.3923i −0.294528 + 0.510138i
\(416\) 2.21650 3.83909i 0.108673 0.188227i
\(417\) 0 0
\(418\) 55.7196 + 16.7563i 2.72534 + 0.819576i
\(419\) 0.577648 0.0282199 0.0141100 0.999900i \(-0.495509\pi\)
0.0141100 + 0.999900i \(0.495509\pi\)
\(420\) 0 0
\(421\) −1.55051 + 2.68556i −0.0755672 + 0.130886i −0.901333 0.433127i \(-0.857410\pi\)
0.825766 + 0.564014i \(0.190743\pi\)
\(422\) −16.7476 29.0078i −0.815262 1.41208i
\(423\) 0 0
\(424\) 1.77526 + 3.07483i 0.0862140 + 0.149327i
\(425\) −8.18236 −0.396903
\(426\) 0 0
\(427\) 8.62372 + 14.9367i 0.417331 + 0.722839i
\(428\) −28.5906 49.5204i −1.38198 2.39366i
\(429\) 0 0
\(430\) 15.5505 0.749912
\(431\) −4.66883 8.08665i −0.224890 0.389520i 0.731397 0.681952i \(-0.238869\pi\)
−0.956286 + 0.292432i \(0.905535\pi\)
\(432\) 0 0
\(433\) 10.8485 + 18.7901i 0.521344 + 0.902995i 0.999692 + 0.0248240i \(0.00790255\pi\)
−0.478348 + 0.878171i \(0.658764\pi\)
\(434\) 38.0462 65.8979i 1.82628 3.16320i
\(435\) 0 0
\(436\) −30.6969 −1.47012
\(437\) 11.4892 10.8128i 0.549605 0.517246i
\(438\) 0 0
\(439\) 19.1742 33.2107i 0.915136 1.58506i 0.108435 0.994104i \(-0.465416\pi\)
0.806702 0.590959i \(-0.201250\pi\)
\(440\) −10.1511 + 17.5823i −0.483936 + 0.838202i
\(441\) 0 0
\(442\) −2.44949 + 4.24264i −0.116510 + 0.201802i
\(443\) 17.6260 + 30.5292i 0.837437 + 1.45048i 0.892030 + 0.451975i \(0.149281\pi\)
−0.0545930 + 0.998509i \(0.517386\pi\)
\(444\) 0 0
\(445\) 5.50510 0.260967
\(446\) 0.406736 + 0.704487i 0.0192595 + 0.0333584i
\(447\) 0 0
\(448\) 42.5959 2.01247
\(449\) 21.7172 1.02490 0.512449 0.858718i \(-0.328738\pi\)
0.512449 + 0.858718i \(0.328738\pi\)
\(450\) 0 0
\(451\) 26.6969 46.2405i 1.25711 2.17738i
\(452\) 14.2953 + 24.7602i 0.672395 + 1.16462i
\(453\) 0 0
\(454\) −12.6742 + 21.9524i −0.594831 + 1.03028i
\(455\) −3.61953 −0.169686
\(456\) 0 0
\(457\) −20.1010 −0.940286 −0.470143 0.882590i \(-0.655798\pi\)
−0.470143 + 0.882590i \(0.655798\pi\)
\(458\) −12.6035 + 21.8298i −0.588921 + 1.02004i
\(459\) 0 0
\(460\) 6.55051 + 11.3458i 0.305419 + 0.529001i
\(461\) 8.81301 15.2646i 0.410463 0.710942i −0.584478 0.811410i \(-0.698701\pi\)
0.994940 + 0.100468i \(0.0320338\pi\)
\(462\) 0 0
\(463\) −0.146428 −0.00680510 −0.00340255 0.999994i \(-0.501083\pi\)
−0.00340255 + 0.999994i \(0.501083\pi\)
\(464\) −7.23907 −0.336065
\(465\) 0 0
\(466\) −24.2474 41.9978i −1.12324 1.94551i
\(467\) 5.14048 0.237873 0.118936 0.992902i \(-0.462052\pi\)
0.118936 + 0.992902i \(0.462052\pi\)
\(468\) 0 0
\(469\) 0.601021 + 1.04100i 0.0277525 + 0.0480688i
\(470\) −11.4362 + 19.8082i −0.527515 + 0.913682i
\(471\) 0 0
\(472\) 13.2247 22.9059i 0.608718 1.05433i
\(473\) −18.1507 + 31.4379i −0.834569 + 1.44552i
\(474\) 0 0
\(475\) −12.3763 + 11.6476i −0.567862 + 0.534429i
\(476\) −24.9711 −1.14455
\(477\) 0 0
\(478\) −12.6742 + 21.9524i −0.579706 + 1.00408i
\(479\) 3.61953 + 6.26922i 0.165381 + 0.286448i 0.936790 0.349891i \(-0.113781\pi\)
−0.771410 + 0.636339i \(0.780448\pi\)
\(480\) 0 0
\(481\) 1.94949 + 3.37662i 0.0888891 + 0.153960i
\(482\) 44.3539 2.02026
\(483\) 0 0
\(484\) −37.4217 64.8163i −1.70099 2.94619i
\(485\) 1.62694 + 2.81795i 0.0738757 + 0.127956i
\(486\) 0 0
\(487\) 8.00000 0.362515 0.181257 0.983436i \(-0.441983\pi\)
0.181257 + 0.983436i \(0.441983\pi\)
\(488\) 8.45927 + 14.6519i 0.382933 + 0.663260i
\(489\) 0 0
\(490\) −6.00000 10.3923i −0.271052 0.469476i
\(491\) −9.91530 + 17.1738i −0.447471 + 0.775043i −0.998221 0.0596275i \(-0.981009\pi\)
0.550749 + 0.834671i \(0.314342\pi\)
\(492\) 0 0
\(493\) −15.1918 −0.684206
\(494\) 2.33441 + 9.90408i 0.105030 + 0.445606i
\(495\) 0 0
\(496\) 4.72474 8.18350i 0.212147 0.367450i
\(497\) 12.4855 21.6256i 0.560053 0.970040i
\(498\) 0 0
\(499\) −13.8258 + 23.9469i −0.618926 + 1.07201i 0.370756 + 0.928730i \(0.379099\pi\)
−0.989682 + 0.143281i \(0.954235\pi\)
\(500\) −16.1051 27.8948i −0.720241 1.24749i
\(501\) 0 0
\(502\) −33.7980 −1.50848
\(503\) −10.3870 17.9907i −0.463131 0.802167i 0.535984 0.844228i \(-0.319941\pi\)
−0.999115 + 0.0420614i \(0.986608\pi\)
\(504\) 0 0
\(505\) 2.20204 0.0979895
\(506\) −48.3152 −2.14787
\(507\) 0 0
\(508\) −10.0000 + 17.3205i −0.443678 + 0.768473i
\(509\) 15.6334 + 27.0779i 0.692940 + 1.20021i 0.970870 + 0.239605i \(0.0770181\pi\)
−0.277931 + 0.960601i \(0.589649\pi\)
\(510\) 0 0
\(511\) 8.62372 14.9367i 0.381491 0.660762i
\(512\) 11.2004 0.494993
\(513\) 0 0
\(514\) −29.1464 −1.28559
\(515\) −1.80977 + 3.13461i −0.0797478 + 0.138127i
\(516\) 0 0
\(517\) −26.6969 46.2405i −1.17413 2.03365i
\(518\) −15.6983 + 27.1903i −0.689745 + 1.19467i
\(519\) 0 0
\(520\) −3.55051 −0.155700
\(521\) −3.14789 −0.137911 −0.0689557 0.997620i \(-0.521967\pi\)
−0.0689557 + 0.997620i \(0.521967\pi\)
\(522\) 0 0
\(523\) 10.1742 + 17.6223i 0.444888 + 0.770569i 0.998044 0.0625086i \(-0.0199101\pi\)
−0.553156 + 0.833078i \(0.686577\pi\)
\(524\) −53.9274 −2.35583
\(525\) 0 0
\(526\) −30.2474 52.3901i −1.31885 2.28432i
\(527\) 9.91530 17.1738i 0.431917 0.748103i
\(528\) 0 0
\(529\) 4.94949 8.57277i 0.215195 0.372729i
\(530\) −1.28512 + 2.22589i −0.0558220 + 0.0966865i
\(531\) 0 0
\(532\) −37.7702 + 35.5464i −1.63754 + 1.54113i
\(533\) 9.33766 0.404459
\(534\) 0 0
\(535\) 8.69694 15.0635i 0.376001 0.651254i
\(536\) 0.589559 + 1.02115i 0.0254651 + 0.0441068i
\(537\) 0 0
\(538\) 18.1237 + 31.3912i 0.781369 + 1.35337i
\(539\) 28.0130 1.20660
\(540\) 0 0
\(541\) 4.84847 + 8.39780i 0.208452 + 0.361049i 0.951227 0.308492i \(-0.0998242\pi\)
−0.742775 + 0.669541i \(0.766491\pi\)
\(542\) 20.7739 + 35.9815i 0.892316 + 1.54554i
\(543\) 0 0
\(544\) 9.30306 0.398865
\(545\) −4.66883 8.08665i −0.199991 0.346394i
\(546\) 0 0
\(547\) 8.82577 + 15.2867i 0.377362 + 0.653611i 0.990678 0.136227i \(-0.0434978\pi\)
−0.613315 + 0.789838i \(0.710164\pi\)
\(548\) −26.9637 + 46.7025i −1.15183 + 1.99503i
\(549\) 0 0
\(550\) 52.0454 2.21922
\(551\) −22.9785 + 21.6256i −0.978917 + 0.921281i
\(552\) 0 0
\(553\) 0.601021 1.04100i 0.0255580 0.0442677i
\(554\) −21.8232 + 37.7989i −0.927179 + 1.60592i
\(555\) 0 0
\(556\) 4.05051 7.01569i 0.171780 0.297532i
\(557\) −1.52094 2.63435i −0.0644444 0.111621i 0.832003 0.554771i \(-0.187194\pi\)
−0.896447 + 0.443150i \(0.853861\pi\)
\(558\) 0 0
\(559\) −6.34847 −0.268512
\(560\) −1.80977 3.13461i −0.0764766 0.132461i
\(561\) 0 0
\(562\) −29.1464 −1.22947
\(563\) −6.29577 −0.265335 −0.132668 0.991161i \(-0.542354\pi\)
−0.132668 + 0.991161i \(0.542354\pi\)
\(564\) 0 0
\(565\) −4.34847 + 7.53177i −0.182941 + 0.316864i
\(566\) −7.23907 12.5384i −0.304281 0.527030i
\(567\) 0 0
\(568\) 12.2474 21.2132i 0.513892 0.890086i
\(569\) 28.0130 1.17436 0.587182 0.809455i \(-0.300237\pi\)
0.587182 + 0.809455i \(0.300237\pi\)
\(570\) 0 0
\(571\) 11.2474 0.470691 0.235346 0.971912i \(-0.424378\pi\)
0.235346 + 0.971912i \(0.424378\pi\)
\(572\) 9.86230 17.0820i 0.412364 0.714235i
\(573\) 0 0
\(574\) 37.5959 + 65.1180i 1.56922 + 2.71797i
\(575\) 7.05624 12.2218i 0.294266 0.509683i
\(576\) 0 0
\(577\) 22.6969 0.944886 0.472443 0.881361i \(-0.343372\pi\)
0.472443 + 0.881361i \(0.343372\pi\)
\(578\) 29.4041 1.22305
\(579\) 0 0
\(580\) −13.1010 22.6916i −0.543990 0.942219i
\(581\) 39.4492 1.63663
\(582\) 0 0
\(583\) −3.00000 5.19615i −0.124247 0.215203i
\(584\) 8.45927 14.6519i 0.350047 0.606300i
\(585\) 0 0
\(586\) 12.0000 20.7846i 0.495715 0.858604i
\(587\) −0.760471 + 1.31718i −0.0313880 + 0.0543656i −0.881293 0.472571i \(-0.843326\pi\)
0.849905 + 0.526936i \(0.176659\pi\)
\(588\) 0 0
\(589\) −9.44949 40.0908i −0.389359 1.65191i
\(590\) 19.1470 0.788268
\(591\) 0 0
\(592\) −1.94949 + 3.37662i −0.0801235 + 0.138778i
\(593\) −11.9609 20.7169i −0.491175 0.850740i 0.508773 0.860901i \(-0.330099\pi\)
−0.999948 + 0.0101603i \(0.996766\pi\)
\(594\) 0 0
\(595\) −3.79796 6.57826i −0.155701 0.269682i
\(596\) −43.0688 −1.76416
\(597\) 0 0
\(598\) −4.22474 7.31747i −0.172763 0.299234i
\(599\) 12.7744 + 22.1259i 0.521946 + 0.904038i 0.999674 + 0.0255298i \(0.00812726\pi\)
−0.477728 + 0.878508i \(0.658539\pi\)
\(600\) 0 0
\(601\) 21.8990 0.893278 0.446639 0.894714i \(-0.352621\pi\)
0.446639 + 0.894714i \(0.352621\pi\)
\(602\) −25.5606 44.2723i −1.04177 1.80441i
\(603\) 0 0
\(604\) 6.89898 + 11.9494i 0.280715 + 0.486213i
\(605\) 11.3832 19.7164i 0.462795 0.801584i
\(606\) 0 0
\(607\) 7.94439 0.322453 0.161226 0.986917i \(-0.448455\pi\)
0.161226 + 0.986917i \(0.448455\pi\)
\(608\) 14.0714 13.2429i 0.570671 0.537071i
\(609\) 0 0
\(610\) −6.12372 + 10.6066i −0.247942 + 0.429449i
\(611\) 4.66883 8.08665i 0.188881 0.327151i
\(612\) 0 0
\(613\) −1.55051 + 2.68556i −0.0626245 + 0.108469i −0.895638 0.444784i \(-0.853280\pi\)
0.833013 + 0.553253i \(0.186614\pi\)
\(614\) −34.5446 59.8329i −1.39411 2.41466i
\(615\) 0 0
\(616\) 66.7423 2.68913
\(617\) −3.67253 6.36101i −0.147851 0.256085i 0.782582 0.622547i \(-0.213902\pi\)
−0.930433 + 0.366462i \(0.880569\pi\)
\(618\) 0 0
\(619\) −0.752551 −0.0302476 −0.0151238 0.999886i \(-0.504814\pi\)
−0.0151238 + 0.999886i \(0.504814\pi\)
\(620\) 34.2027 1.37362
\(621\) 0 0
\(622\) −27.3712 + 47.4083i −1.09748 + 1.90090i
\(623\) −9.04883 15.6730i −0.362534 0.627927i
\(624\) 0 0
\(625\) −4.84847 + 8.39780i −0.193939 + 0.335912i
\(626\) −7.23907 −0.289331
\(627\) 0 0
\(628\) −54.1464 −2.16068
\(629\) −4.09118 + 7.08613i −0.163126 + 0.282543i
\(630\) 0 0
\(631\) −3.17423 5.49794i −0.126364 0.218869i 0.795901 0.605427i \(-0.206997\pi\)
−0.922265 + 0.386557i \(0.873664\pi\)
\(632\) 0.589559 1.02115i 0.0234514 0.0406190i
\(633\) 0 0
\(634\) 24.2474 0.962989
\(635\) −6.08377 −0.241427
\(636\) 0 0
\(637\) 2.44949 + 4.24264i 0.0970523 + 0.168100i
\(638\) 96.6305 3.82564
\(639\) 0 0
\(640\) 10.4722 + 18.1384i 0.413950 + 0.716982i
\(641\) −23.3441 + 40.4332i −0.922038 + 1.59702i −0.125782 + 0.992058i \(0.540144\pi\)
−0.796257 + 0.604959i \(0.793189\pi\)
\(642\) 0 0
\(643\) −1.82577 + 3.16232i −0.0720012 + 0.124710i −0.899778 0.436347i \(-0.856272\pi\)
0.827777 + 0.561057i \(0.189605\pi\)
\(644\) 21.5344 37.2986i 0.848573 1.46977i
\(645\) 0 0
\(646\) −15.5505 + 14.6349i −0.611827 + 0.575804i
\(647\) −16.5767 −0.651698 −0.325849 0.945422i \(-0.605650\pi\)
−0.325849 + 0.945422i \(0.605650\pi\)
\(648\) 0 0
\(649\) −22.3485 + 38.7087i −0.877254 + 1.51945i
\(650\) 4.55092 + 7.88242i 0.178502 + 0.309174i
\(651\) 0 0
\(652\) 16.2980 + 28.2289i 0.638277 + 1.10553i
\(653\) −39.4492 −1.54377 −0.771884 0.635764i \(-0.780685\pi\)
−0.771884 + 0.635764i \(0.780685\pi\)
\(654\) 0 0
\(655\) −8.20204 14.2064i −0.320480 0.555088i
\(656\) 4.66883 + 8.08665i 0.182287 + 0.315731i
\(657\) 0 0
\(658\) 75.1918 2.93128
\(659\) 5.90095 + 10.2207i 0.229868 + 0.398144i 0.957769 0.287539i \(-0.0928371\pi\)
−0.727901 + 0.685683i \(0.759504\pi\)
\(660\) 0 0
\(661\) −20.5959 35.6732i −0.801088 1.38753i −0.918900 0.394490i \(-0.870921\pi\)
0.117812 0.993036i \(-0.462412\pi\)
\(662\) −4.02627 + 6.97370i −0.156485 + 0.271041i
\(663\) 0 0
\(664\) 38.6969 1.50173
\(665\) −15.1088 4.54358i −0.585893 0.176193i
\(666\) 0 0
\(667\) 13.1010 22.6916i 0.507274 0.878624i
\(668\) 33.2064 57.5153i 1.28480 2.22533i
\(669\) 0 0
\(670\) −0.426786 + 0.739215i −0.0164882 + 0.0285584i
\(671\) −14.2953 24.7602i −0.551864 0.955857i
\(672\) 0 0
\(673\) 21.8990 0.844144 0.422072 0.906562i \(-0.361303\pi\)
0.422072 + 0.906562i \(0.361303\pi\)
\(674\) 29.9936 + 51.9505i 1.15531 + 2.00106i
\(675\) 0 0
\(676\) −41.3939 −1.59207
\(677\) −22.8725 −0.879061 −0.439531 0.898228i \(-0.644855\pi\)
−0.439531 + 0.898228i \(0.644855\pi\)
\(678\) 0 0
\(679\) 5.34847 9.26382i 0.205255 0.355513i
\(680\) −3.72553 6.45281i −0.142868 0.247454i
\(681\) 0 0
\(682\) −63.0681 + 109.237i −2.41500 + 4.18291i
\(683\) 0.577648 0.0221031 0.0110515 0.999939i \(-0.496482\pi\)
0.0110515 + 0.999939i \(0.496482\pi\)
\(684\) 0 0
\(685\) −16.4041 −0.626768
\(686\) 8.45927 14.6519i 0.322977 0.559412i
\(687\) 0 0
\(688\) −3.17423 5.49794i −0.121017 0.209607i
\(689\) 0.524648 0.908716i 0.0199875 0.0346193i
\(690\) 0 0
\(691\) 25.3939 0.966029 0.483014 0.875612i \(-0.339542\pi\)
0.483014 + 0.875612i \(0.339542\pi\)
\(692\) 24.9711 0.949258
\(693\) 0 0
\(694\) −10.2247 17.7098i −0.388126 0.672254i
\(695\) 2.46424 0.0934739
\(696\) 0 0
\(697\) 9.79796 + 16.9706i 0.371124 + 0.642806i
\(698\) −19.6067 + 33.9598i −0.742124 + 1.28540i
\(699\) 0 0
\(700\) −23.1969 + 40.1783i −0.876762 + 1.51860i
\(701\) 15.1088 26.1692i 0.570651 0.988396i −0.425848 0.904794i \(-0.640024\pi\)
0.996499 0.0836016i \(-0.0266423\pi\)
\(702\) 0 0
\(703\) 3.89898 + 16.5420i 0.147053 + 0.623892i
\(704\) −70.6101 −2.66122
\(705\) 0 0
\(706\) −23.0227 + 39.8765i −0.866471 + 1.50077i
\(707\) −3.61953 6.26922i −0.136127 0.235778i
\(708\) 0 0
\(709\) −14.1969 24.5898i −0.533177 0.923490i −0.999249 0.0387432i \(-0.987665\pi\)
0.466072 0.884747i \(-0.345669\pi\)
\(710\) 17.7320 0.665471
\(711\) 0 0
\(712\) −8.87628 15.3742i −0.332652 0.576171i
\(713\) 17.1014 + 29.6204i 0.640451 + 1.10929i
\(714\) 0 0
\(715\) 6.00000 0.224387
\(716\) −0.996295 1.72563i −0.0372333 0.0644900i
\(717\) 0 0
\(718\) −16.8990 29.2699i −0.630664 1.09234i
\(719\) −23.6330 + 40.9335i −0.881361 + 1.52656i −0.0315323 + 0.999503i \(0.510039\pi\)
−0.849829 + 0.527059i \(0.823295\pi\)
\(720\) 0 0
\(721\) 11.8990 0.443141
\(722\) −2.68815 + 44.2723i −0.100043 + 1.64765i
\(723\) 0 0
\(724\) 36.0454 62.4325i 1.33962 2.32028i
\(725\) −14.1125 + 24.4435i −0.524125 + 0.907810i
\(726\) 0 0
\(727\) 20.5227 35.5464i 0.761145 1.31834i −0.181116 0.983462i \(-0.557971\pi\)
0.942261 0.334880i \(-0.108696\pi\)
\(728\) 5.83604 + 10.1083i 0.216298 + 0.374639i
\(729\) 0 0
\(730\) 12.2474 0.453298
\(731\) −6.66142 11.5379i −0.246381 0.426745i
\(732\) 0 0
\(733\) 5.30306 0.195873 0.0979365 0.995193i \(-0.468776\pi\)
0.0979365 + 0.995193i \(0.468776\pi\)
\(734\) 47.5018 1.75332
\(735\) 0 0
\(736\) −8.02270 + 13.8957i −0.295721 + 0.512203i
\(737\) −0.996295 1.72563i −0.0366990 0.0635645i
\(738\) 0 0
\(739\) 14.5227 25.1541i 0.534226 0.925307i −0.464974 0.885324i \(-0.653936\pi\)
0.999200 0.0399828i \(-0.0127303\pi\)
\(740\) −14.1125 −0.518785
\(741\) 0 0
\(742\) 8.44949 0.310191
\(743\) 15.8163 27.3946i 0.580242 1.00501i −0.415208 0.909726i \(-0.636291\pi\)
0.995450 0.0952823i \(-0.0303754\pi\)
\(744\) 0 0
\(745\) −6.55051 11.3458i −0.239992 0.415679i
\(746\) −35.8297 + 62.0588i −1.31182 + 2.27214i
\(747\) 0 0
\(748\) 41.3939 1.51351
\(749\) −57.1812 −2.08936
\(750\) 0 0
\(751\) 17.5227 + 30.3502i 0.639413 + 1.10750i 0.985562 + 0.169316i \(0.0541557\pi\)
−0.346149 + 0.938179i \(0.612511\pi\)
\(752\) 9.33766 0.340509
\(753\) 0 0
\(754\) 8.44949 + 14.6349i 0.307712 + 0.532973i
\(755\) −2.09859 + 3.63487i −0.0763755 + 0.132286i
\(756\) 0 0
\(757\) −8.19694 + 14.1975i −0.297923 + 0.516017i −0.975661 0.219286i \(-0.929627\pi\)
0.677738 + 0.735304i \(0.262960\pi\)
\(758\) −4.02627 + 6.97370i −0.146241 + 0.253296i
\(759\) 0 0
\(760\) −14.8207 4.45694i −0.537602 0.161670i
\(761\) −1.99259 −0.0722313 −0.0361157 0.999348i \(-0.511498\pi\)
−0.0361157 + 0.999348i \(0.511498\pi\)
\(762\) 0 0
\(763\) −15.3485 + 26.5843i −0.555652 + 0.962417i
\(764\) −9.86230 17.0820i −0.356806 0.618006i
\(765\) 0 0
\(766\) −11.5732 20.0454i −0.418157 0.724270i
\(767\) −7.81671 −0.282245
\(768\) 0 0
\(769\) −14.1969 24.5898i −0.511955 0.886732i −0.999904 0.0138595i \(-0.995588\pi\)
0.487949 0.872872i \(-0.337745\pi\)
\(770\) 24.1576 + 41.8422i 0.870580 + 1.50789i
\(771\) 0 0
\(772\) 67.9444 2.44537
\(773\) −4.66883 8.08665i −0.167926 0.290857i 0.769764 0.638328i \(-0.220374\pi\)
−0.937691 + 0.347472i \(0.887040\pi\)
\(774\) 0 0
\(775\) −18.4217 31.9073i −0.661726 1.14614i
\(776\) 5.24648 9.08716i 0.188338 0.326210i
\(777\) 0 0
\(778\) −29.1464 −1.04495
\(779\) 38.9776 + 11.7215i 1.39652 + 0.419967i
\(780\) 0 0
\(781\) −20.6969 + 35.8481i −0.740595 + 1.28275i
\(782\) 8.86601 15.3564i 0.317048 0.549143i
\(783\) 0 0
\(784\) −2.44949 + 4.24264i −0.0874818 + 0.151523i
\(785\) −8.23536 14.2641i −0.293933 0.509106i
\(786\) 0 0
\(787\) 47.2474 1.68419 0.842095 0.539329i \(-0.181322\pi\)
0.842095 + 0.539329i \(0.181322\pi\)
\(788\) −25.1539 43.5678i −0.896071 1.55204i
\(789\) 0 0
\(790\) 0.853572 0.0303687
\(791\) 28.5906 1.01657
\(792\) 0 0
\(793\) 2.50000 4.33013i 0.0887776 0.153767i
\(794\) −8.17045 14.1516i −0.289958 0.502223i
\(795\) 0 0
\(796\) −0.601021 + 1.04100i −0.0213026 + 0.0368972i
\(797\) 26.8577 0.951348 0.475674 0.879622i \(-0.342204\pi\)
0.475674 + 0.879622i \(0.342204\pi\)
\(798\) 0 0
\(799\) 19.5959 0.693254
\(800\) 8.64210 14.9686i 0.305544 0.529218i
\(801\) 0 0
\(802\) −8.57321 14.8492i −0.302731 0.524345i
\(803\) −14.2953 + 24.7602i −0.504471 + 0.873769i
\(804\) 0 0
\(805\) 13.1010 0.461750
\(806\) −22.0590 −0.776996
\(807\) 0 0
\(808\) −3.55051 6.14966i −0.124907 0.216344i
\(809\) −37.4566 −1.31690 −0.658452 0.752622i \(-0.728789\pi\)
−0.658452 + 0.752622i \(0.728789\pi\)
\(810\) 0 0
\(811\) −8.89898 15.4135i −0.312485 0.541241i 0.666414 0.745582i \(-0.267828\pi\)
−0.978900 + 0.204341i \(0.934495\pi\)
\(812\) −43.0688 + 74.5973i −1.51142 + 2.61785i
\(813\) 0 0
\(814\) 26.0227 45.0726i 0.912095 1.57980i
\(815\) −4.95765 + 8.58691i −0.173659 + 0.300786i
\(816\) 0 0
\(817\) −26.5000 7.96920i −0.927118 0.278807i
\(818\) −7.23907 −0.253108
\(819\) 0 0
\(820\) −16.8990 + 29.2699i −0.590138 + 1.02215i
\(821\) 15.0558 + 26.0774i 0.525450 + 0.910107i 0.999561 + 0.0296412i \(0.00943648\pi\)
−0.474110 + 0.880465i \(0.657230\pi\)
\(822\) 0 0
\(823\) 15.1010 + 26.1557i 0.526388 + 0.911732i 0.999527 + 0.0307437i \(0.00978757\pi\)
−0.473139 + 0.880988i \(0.656879\pi\)
\(824\) 11.6721 0.406616
\(825\) 0 0
\(826\) −31.4722 54.5114i −1.09506 1.89670i
\(827\) −16.6827 28.8953i −0.580115 1.00479i −0.995465 0.0951272i \(-0.969674\pi\)
0.415350 0.909662i \(-0.363659\pi\)
\(828\) 0 0
\(829\) −52.1918 −1.81270 −0.906349 0.422531i \(-0.861142\pi\)
−0.906349 + 0.422531i \(0.861142\pi\)
\(830\) 14.0065 + 24.2599i 0.486172 + 0.842075i
\(831\) 0 0
\(832\) −6.17423 10.6941i −0.214053 0.370751i
\(833\) −5.14048 + 8.90357i −0.178107 + 0.308490i
\(834\) 0 0
\(835\) 20.2020 0.699120
\(836\) 62.6105 58.9242i 2.16543 2.03794i
\(837\) 0 0
\(838\) 0.674235 1.16781i 0.0232910 0.0403413i
\(839\) 5.53530 9.58742i 0.191100 0.330995i −0.754515 0.656283i \(-0.772128\pi\)
0.945615 + 0.325288i \(0.105461\pi\)
\(840\) 0 0
\(841\) −11.7020 + 20.2685i −0.403519 + 0.698915i
\(842\) 3.61953 + 6.26922i 0.124737 + 0.216051i
\(843\) 0 0
\(844\) −49.4949 −1.70368
\(845\) −6.29577 10.9046i −0.216581 0.375130i
\(846\) 0 0
\(847\) −74.8434 −2.57165
\(848\) 1.04930 0.0360329
\(849\) 0 0
\(850\) −9.55051 + 16.5420i −0.327580 + 0.567385i
\(851\) −7.05624 12.2218i −0.241885 0.418957i
\(852\) 0 0
\(853\) 19.8485 34.3786i 0.679599 1.17710i −0.295503 0.955342i \(-0.595487\pi\)
0.975102 0.221758i \(-0.0711794\pi\)
\(854\) 40.2627 1.37776
\(855\) 0 0
\(856\) −56.0908 −1.91714
\(857\) −4.19718 + 7.26973i −0.143373 + 0.248329i −0.928765 0.370670i \(-0.879128\pi\)
0.785392 + 0.618999i \(0.212462\pi\)
\(858\) 0 0
\(859\) 26.5227 + 45.9387i 0.904943 + 1.56741i 0.820994 + 0.570937i \(0.193420\pi\)
0.0839492 + 0.996470i \(0.473247\pi\)
\(860\) 11.4892 19.9000i 0.391780 0.678583i
\(861\) 0 0
\(862\) −21.7980 −0.742441
\(863\) −17.7320 −0.603605 −0.301802 0.953370i \(-0.597588\pi\)
−0.301802 + 0.953370i \(0.597588\pi\)
\(864\) 0 0
\(865\) 3.79796 + 6.57826i 0.129134 + 0.223667i
\(866\) 50.6496 1.72114
\(867\) 0 0
\(868\) −56.2196 97.3753i −1.90822 3.30513i
\(869\) −0.996295 + 1.72563i −0.0337970 + 0.0585381i
\(870\) 0 0
\(871\) 0.174235 0.301783i 0.00590371 0.0102255i
\(872\) −15.0558 + 26.0774i −0.509853 + 0.883091i
\(873\) 0 0
\(874\) −8.44949 35.8481i −0.285808 1.21258i
\(875\) −32.2102 −1.08890
\(876\) 0 0
\(877\) 1.84847 3.20164i 0.0624184 0.108112i −0.833128 0.553081i \(-0.813452\pi\)
0.895546 + 0.444969i \(0.146785\pi\)
\(878\) −44.7606 77.5276i −1.51060 2.61643i
\(879\) 0 0
\(880\) 3.00000 + 5.19615i 0.101130 + 0.175162i
\(881\) 58.0185 1.95469 0.977347 0.211643i \(-0.0678815\pi\)
0.977347 + 0.211643i \(0.0678815\pi\)
\(882\) 0 0
\(883\) −15.1742 26.2825i −0.510654 0.884478i −0.999924 0.0123458i \(-0.996070\pi\)
0.489270 0.872132i \(-0.337263\pi\)
\(884\) 3.61953 + 6.26922i 0.121738 + 0.210857i
\(885\) 0 0
\(886\) 82.2929 2.76468
\(887\) 24.2106 + 41.9340i 0.812913 + 1.40801i 0.910817 + 0.412811i \(0.135453\pi\)
−0.0979041 + 0.995196i \(0.531214\pi\)
\(888\) 0 0
\(889\) 10.0000 + 17.3205i 0.335389 + 0.580911i
\(890\) 6.42559 11.1295i 0.215386 0.373060i
\(891\) 0 0
\(892\) 1.20204 0.0402473
\(893\) 29.6399 27.8948i 0.991862 0.933464i
\(894\) 0 0
\(895\) 0.303062 0.524918i 0.0101302 0.0175461i
\(896\) 34.4267 59.6287i 1.15011 1.99206i
\(897\) 0 0
\(898\) 25.3485 43.9048i 0.845889 1.46512i
\(899\) −34.2027 59.2409i −1.14073 1.97579i
\(900\) 0 0
\(901\) 2.20204 0.0733606
\(902\) −62.3217 107.944i −2.07509 3.59415i
\(903\) 0 0
\(904\) 28.0454 0.932776
\(905\) 21.9292 0.728951
\(906\) 0 0
\(907\) −17.5959 + 30.4770i −0.584263 + 1.01197i 0.410704 + 0.911769i \(0.365283\pi\)
−0.994967 + 0.100204i \(0.968050\pi\)
\(908\) 18.7283 + 32.4384i 0.621521 + 1.07651i
\(909\) 0 0
\(910\) −4.22474 + 7.31747i −0.140049 + 0.242572i
\(911\) 17.7320 0.587488 0.293744 0.955884i \(-0.405099\pi\)
0.293744 + 0.955884i \(0.405099\pi\)
\(912\) 0 0
\(913\) −65.3939 −2.16422
\(914\) −23.4621 + 40.6375i −0.776056 + 1.34417i
\(915\) 0 0
\(916\) 18.6237 + 32.2572i 0.615345 + 1.06581i
\(917\) −26.9637 + 46.7025i −0.890419 + 1.54225i
\(918\) 0 0
\(919\) 29.2474 0.964784 0.482392 0.875955i \(-0.339768\pi\)
0.482392 + 0.875955i \(0.339768\pi\)
\(920\) 12.8512 0.423691
\(921\) 0 0
\(922\) −20.5732 35.6339i −0.677543 1.17354i
\(923\) −7.23907 −0.238277
\(924\) 0 0
\(925\) 7.60102 + 13.1654i 0.249920 + 0.432874i
\(926\) −0.170912 + 0.296028i −0.00561652 + 0.00972809i
\(927\) 0 0
\(928\) 16.0454 27.7915i 0.526716 0.912299i
\(929\) 27.9600 48.4281i 0.917337 1.58887i 0.113893 0.993493i \(-0.463668\pi\)
0.803443 0.595381i \(-0.202999\pi\)
\(930\) 0 0
\(931\) 4.89898 + 20.7846i 0.160558 + 0.681188i
\(932\) −71.6594 −2.34728
\(933\) 0 0
\(934\) 6.00000 10.3923i 0.196326 0.340047i
\(935\) 6.29577 + 10.9046i 0.205894 + 0.356618i
\(936\) 0 0
\(937\) 19.5454 + 33.8536i 0.638521 + 1.10595i 0.985758 + 0.168173i \(0.0537866\pi\)
−0.347237 + 0.937777i \(0.612880\pi\)
\(938\) 2.80606 0.0916212
\(939\) 0 0
\(940\) 16.8990 + 29.2699i 0.551184 + 0.954679i
\(941\) 3.04189 + 5.26870i 0.0991626 + 0.171755i 0.911338 0.411658i \(-0.135050\pi\)
−0.812176 + 0.583413i \(0.801717\pi\)
\(942\) 0 0
\(943\) −33.7980 −1.10061
\(944\) −3.90836 6.76947i −0.127206 0.220328i
\(945\) 0 0
\(946\) 42.3712 + 73.3890i 1.37761 + 2.38608i
\(947\) 19.2530 33.3471i 0.625637 1.08364i −0.362780 0.931875i \(-0.618172\pi\)
0.988417 0.151761i \(-0.0484943\pi\)
\(948\) 0 0
\(949\) −5.00000 −0.162307
\(950\) 9.10183 + 38.6158i 0.295302 + 1.25286i
\(951\) 0 0
\(952\) −12.2474 + 21.2132i −0.396942 + 0.687524i
\(953\) 11.3832 19.7164i 0.368740 0.638676i −0.620629 0.784104i \(-0.713123\pi\)
0.989369 + 0.145429i \(0.0464561\pi\)
\(954\) 0 0
\(955\) 3.00000 5.19615i 0.0970777 0.168144i
\(956\) 18.7283 + 32.4384i 0.605717 + 1.04913i
\(957\) 0 0
\(958\) 16.8990 0.545981
\(959\) 26.9637 + 46.7025i 0.870702 + 1.50810i
\(960\) 0 0
\(961\) 58.2929 1.88041
\(962\) 9.10183 0.293455
\(963\) 0 0
\(964\) 32.7702 56.7596i 1.05546 1.82810i
\(965\) 10.3340 + 17.8989i 0.332662 + 0.576187i
\(966\) 0 0
\(967\) 10.1742 17.6223i 0.327181 0.566695i −0.654770 0.755828i \(-0.727235\pi\)
0.981951 + 0.189133i \(0.0605679\pi\)
\(968\) −73.4161 −2.35968
\(969\) 0 0
\(970\) 7.59592 0.243890
\(971\) 9.80930 16.9902i 0.314796 0.545242i −0.664598 0.747201i \(-0.731397\pi\)
0.979394 + 0.201959i \(0.0647307\pi\)
\(972\) 0 0
\(973\) −4.05051 7.01569i −0.129853 0.224913i
\(974\) 9.33766 16.1733i 0.299198 0.518226i
\(975\) 0 0
\(976\) 5.00000 0.160046
\(977\) 5.14048 0.164458 0.0822292 0.996613i \(-0.473796\pi\)
0.0822292 + 0.996613i \(0.473796\pi\)
\(978\) 0 0
\(979\) 15.0000 + 25.9808i 0.479402 + 0.830349i
\(980\) −17.7320 −0.566429
\(981\) 0 0
\(982\) 23.1464 + 40.0908i 0.738632 + 1.27935i
\(983\) −3.33071 + 5.76896i −0.106233 + 0.184001i −0.914241 0.405170i \(-0.867212\pi\)
0.808008 + 0.589171i \(0.200546\pi\)
\(984\) 0 0
\(985\) 7.65153 13.2528i 0.243798 0.422271i
\(986\) −17.7320 + 30.7128i −0.564703 + 0.978093i
\(987\) 0 0
\(988\) 14.3990 + 4.33013i 0.458093 + 0.137760i
\(989\) 22.9785 0.730674
\(990\) 0 0
\(991\) 1.47730 2.55875i 0.0469279 0.0812814i −0.841607 0.540090i \(-0.818390\pi\)
0.888535 + 0.458808i \(0.151724\pi\)
\(992\) 20.9448 + 36.2775i 0.664999 + 1.15181i
\(993\) 0 0
\(994\) −29.1464 50.4831i −0.924469 1.60123i
\(995\) −0.365647 −0.0115918
\(996\) 0 0
\(997\) 22.5454 + 39.0498i 0.714020 + 1.23672i 0.963336 + 0.268297i \(0.0864609\pi\)
−0.249316 + 0.968422i \(0.580206\pi\)
\(998\) 32.2751 + 55.9020i 1.02165 + 1.76955i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 171.2.f.c.163.4 yes 8
3.2 odd 2 inner 171.2.f.c.163.1 yes 8
4.3 odd 2 2736.2.s.bb.1873.3 8
12.11 even 2 2736.2.s.bb.1873.2 8
19.7 even 3 inner 171.2.f.c.64.4 yes 8
19.8 odd 6 3249.2.a.be.1.4 4
19.11 even 3 3249.2.a.bd.1.1 4
57.8 even 6 3249.2.a.be.1.1 4
57.11 odd 6 3249.2.a.bd.1.4 4
57.26 odd 6 inner 171.2.f.c.64.1 8
76.7 odd 6 2736.2.s.bb.577.3 8
228.83 even 6 2736.2.s.bb.577.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
171.2.f.c.64.1 8 57.26 odd 6 inner
171.2.f.c.64.4 yes 8 19.7 even 3 inner
171.2.f.c.163.1 yes 8 3.2 odd 2 inner
171.2.f.c.163.4 yes 8 1.1 even 1 trivial
2736.2.s.bb.577.2 8 228.83 even 6
2736.2.s.bb.577.3 8 76.7 odd 6
2736.2.s.bb.1873.2 8 12.11 even 2
2736.2.s.bb.1873.3 8 4.3 odd 2
3249.2.a.bd.1.1 4 19.11 even 3
3249.2.a.bd.1.4 4 57.11 odd 6
3249.2.a.be.1.1 4 57.8 even 6
3249.2.a.be.1.4 4 19.8 odd 6