Properties

Label 171.2.t
Level $171$
Weight $2$
Character orbit 171.t
Rep. character $\chi_{171}(122,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $36$
Newform subspaces $1$
Sturm bound $40$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 171.t (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 171 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(40\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(171, [\chi])\).

Total New Old
Modular forms 44 44 0
Cusp forms 36 36 0
Eisenstein series 8 8 0

Trace form

\( 36 q - 6 q^{2} - 3 q^{3} + 30 q^{4} - 3 q^{5} - 11 q^{6} - q^{7} - 12 q^{8} + 5 q^{9} - 6 q^{10} - 9 q^{11} - 15 q^{12} - 3 q^{14} + 18 q^{15} + 18 q^{16} + 27 q^{17} - 6 q^{18} + q^{19} + 9 q^{20} + 6 q^{21}+ \cdots - 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(171, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
171.2.t.a 171.t 171.t $36$ $1.365$ None 171.2.k.a \(-6\) \(-3\) \(-3\) \(-1\) $\mathrm{SU}(2)[C_{6}]$