Properties

Label 171.2.x
Level 171171
Weight 22
Character orbit 171.x
Rep. character χ171(14,)\chi_{171}(14,\cdot)
Character field Q(ζ18)\Q(\zeta_{18})
Dimension 108108
Newform subspaces 11
Sturm bound 4040
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 171=3219 171 = 3^{2} \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 171.x (of order 1818 and degree 66)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 171 171
Character field: Q(ζ18)\Q(\zeta_{18})
Newform subspaces: 1 1
Sturm bound: 4040
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M2(171,[χ])M_{2}(171, [\chi]).

Total New Old
Modular forms 132 132 0
Cusp forms 108 108 0
Eisenstein series 24 24 0

Trace form

108q9q23q49q5+3q724q912q109q126q139q1436q159q16+27q17+36q1815q1918q20+3q21+30q2245q23++39q99+O(q100) 108 q - 9 q^{2} - 3 q^{4} - 9 q^{5} + 3 q^{7} - 24 q^{9} - 12 q^{10} - 9 q^{12} - 6 q^{13} - 9 q^{14} - 36 q^{15} - 9 q^{16} + 27 q^{17} + 36 q^{18} - 15 q^{19} - 18 q^{20} + 3 q^{21} + 30 q^{22} - 45 q^{23}+ \cdots + 39 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(171,[χ])S_{2}^{\mathrm{new}}(171, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
171.2.x.a 171.x 171.x 108108 1.3651.365 None 171.2.x.a 9-9 00 9-9 33 SU(2)[C18]\mathrm{SU}(2)[C_{18}]