Properties

Label 171.2.x
Level $171$
Weight $2$
Character orbit 171.x
Rep. character $\chi_{171}(14,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $108$
Newform subspaces $1$
Sturm bound $40$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 171.x (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 171 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(40\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(171, [\chi])\).

Total New Old
Modular forms 132 132 0
Cusp forms 108 108 0
Eisenstein series 24 24 0

Trace form

\( 108 q - 9 q^{2} - 3 q^{4} - 9 q^{5} + 3 q^{7} - 24 q^{9} - 12 q^{10} - 9 q^{12} - 6 q^{13} - 9 q^{14} - 36 q^{15} - 9 q^{16} + 27 q^{17} + 36 q^{18} - 15 q^{19} - 18 q^{20} + 3 q^{21} + 30 q^{22} - 45 q^{23}+ \cdots + 39 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(171, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
171.2.x.a 171.x 171.x $108$ $1.365$ None 171.2.x.a \(-9\) \(0\) \(-9\) \(3\) $\mathrm{SU}(2)[C_{18}]$