Defining parameters
Level: | \( N \) | = | \( 171 = 3^{2} \cdot 19 \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 16 \) | ||
Newform subspaces: | \( 36 \) | ||
Sturm bound: | \(8640\) | ||
Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(171))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 3384 | 2626 | 758 |
Cusp forms | 3096 | 2474 | 622 |
Eisenstein series | 288 | 152 | 136 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(171))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(171))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(171)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(57))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(171))\)\(^{\oplus 1}\)