Properties

Label 171.6.a
Level $171$
Weight $6$
Character orbit 171.a
Rep. character $\chi_{171}(1,\cdot)$
Character field $\Q$
Dimension $38$
Newform subspaces $12$
Sturm bound $120$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 171.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 12 \)
Sturm bound: \(120\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(171))\).

Total New Old
Modular forms 104 38 66
Cusp forms 96 38 58
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(19\)FrickeDim
\(+\)\(+\)\(+\)\(6\)
\(+\)\(-\)\(-\)\(10\)
\(-\)\(+\)\(-\)\(12\)
\(-\)\(-\)\(+\)\(10\)
Plus space\(+\)\(16\)
Minus space\(-\)\(22\)

Trace form

\( 38 q - 6 q^{2} + 602 q^{4} + 3 q^{5} + 115 q^{7} + 348 q^{8} + 240 q^{10} - 609 q^{11} - 218 q^{13} + 3408 q^{14} + 12002 q^{16} + 141 q^{17} + 722 q^{19} - 1944 q^{20} - 1344 q^{22} - 7452 q^{23} + 19793 q^{25}+ \cdots + 147150 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(171))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 19
171.6.a.a 171.a 1.a $1$ $27.426$ \(\Q\) None 57.6.a.b \(-11\) \(0\) \(-6\) \(-176\) $-$ $+$ $\mathrm{SU}(2)$ \(q-11q^{2}+89q^{4}-6q^{5}-176q^{7}+\cdots\)
171.6.a.b 171.a 1.a $1$ $27.426$ \(\Q\) None 19.6.a.b \(2\) \(0\) \(24\) \(-167\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}-28q^{4}+24q^{5}-167q^{7}+\cdots\)
171.6.a.c 171.a 1.a $1$ $27.426$ \(\Q\) None 57.6.a.a \(2\) \(0\) \(98\) \(240\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}-28q^{4}+98q^{5}+240q^{7}+\cdots\)
171.6.a.d 171.a 1.a $1$ $27.426$ \(\Q\) None 19.6.a.a \(6\) \(0\) \(-54\) \(248\) $-$ $-$ $\mathrm{SU}(2)$ \(q+6q^{2}+4q^{4}-54q^{5}+248q^{7}-168q^{8}+\cdots\)
171.6.a.e 171.a 1.a $2$ $27.426$ \(\Q(\sqrt{17}) \) None 57.6.a.c \(3\) \(0\) \(87\) \(-251\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{2}+(7+3\beta )q^{4}+(46-5\beta )q^{5}+\cdots\)
171.6.a.f 171.a 1.a $2$ $27.426$ \(\Q(\sqrt{177}) \) None 19.6.a.c \(7\) \(0\) \(133\) \(72\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(4-\beta )q^{2}+(28-7\beta )q^{4}+(69-5\beta )q^{5}+\cdots\)
171.6.a.g 171.a 1.a $3$ $27.426$ 3.3.9153.1 None 57.6.a.e \(-9\) \(0\) \(9\) \(141\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-3+\beta _{1})q^{2}+(7-7\beta _{1}+2\beta _{2})q^{4}+\cdots\)
171.6.a.h 171.a 1.a $3$ $27.426$ 3.3.616092.1 None 57.6.a.d \(4\) \(0\) \(-206\) \(186\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{1})q^{2}+(26+4\beta _{1}+2\beta _{2})q^{4}+\cdots\)
171.6.a.i 171.a 1.a $4$ $27.426$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 19.6.a.d \(-9\) \(0\) \(-90\) \(-190\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-3+\beta _{1}-\beta _{2})q^{2}+(23-2\beta _{1}-3\beta _{2}+\cdots)q^{4}+\cdots\)
171.6.a.j 171.a 1.a $4$ $27.426$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 57.6.a.f \(-1\) \(0\) \(8\) \(-142\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(14-\beta _{1}-\beta _{2}+\beta _{3})q^{4}+\cdots\)
171.6.a.k 171.a 1.a $6$ $27.426$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 171.6.a.k \(0\) \(0\) \(0\) \(-10\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(7+\beta _{2})q^{4}+(-3\beta _{1}-\beta _{3}+\cdots)q^{5}+\cdots\)
171.6.a.l 171.a 1.a $10$ $27.426$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 171.6.a.l \(0\) \(0\) \(0\) \(164\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(20+\beta _{2})q^{4}+(3\beta _{1}+\beta _{4}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(171))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(171)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 2}\)