Properties

Label 175.4.a.j.1.3
Level $175$
Weight $4$
Character 175.1
Self dual yes
Analytic conductor $10.325$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(1,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.3253342510\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 27x^{3} + 7x^{2} + 120x + 60 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.555276\) of defining polynomial
Character \(\chi\) \(=\) 175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.55528 q^{2} -4.96149 q^{3} -5.58112 q^{4} -7.71648 q^{6} +7.00000 q^{7} -21.1224 q^{8} -2.38365 q^{9} +29.8232 q^{11} +27.6906 q^{12} +90.7316 q^{13} +10.8869 q^{14} +11.7978 q^{16} +29.5740 q^{17} -3.70723 q^{18} -62.3278 q^{19} -34.7304 q^{21} +46.3833 q^{22} +90.6198 q^{23} +104.798 q^{24} +141.113 q^{26} +145.787 q^{27} -39.0678 q^{28} +193.070 q^{29} -152.123 q^{31} +187.328 q^{32} -147.967 q^{33} +45.9957 q^{34} +13.3034 q^{36} +102.453 q^{37} -96.9368 q^{38} -450.164 q^{39} -266.744 q^{41} -54.0154 q^{42} +387.125 q^{43} -166.447 q^{44} +140.939 q^{46} -152.298 q^{47} -58.5346 q^{48} +49.0000 q^{49} -146.731 q^{51} -506.384 q^{52} -81.5982 q^{53} +226.738 q^{54} -147.857 q^{56} +309.238 q^{57} +300.277 q^{58} -235.884 q^{59} +510.453 q^{61} -236.593 q^{62} -16.6855 q^{63} +196.964 q^{64} -230.130 q^{66} -347.374 q^{67} -165.056 q^{68} -449.609 q^{69} +317.014 q^{71} +50.3483 q^{72} -709.901 q^{73} +159.343 q^{74} +347.858 q^{76} +208.762 q^{77} -700.129 q^{78} +1062.95 q^{79} -658.960 q^{81} -414.861 q^{82} +503.810 q^{83} +193.834 q^{84} +602.086 q^{86} -957.914 q^{87} -629.937 q^{88} +482.342 q^{89} +635.121 q^{91} -505.760 q^{92} +754.756 q^{93} -236.866 q^{94} -929.425 q^{96} +481.167 q^{97} +76.2085 q^{98} -71.0879 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 4 q^{2} + 10 q^{3} + 18 q^{4} + 6 q^{6} + 35 q^{7} + 42 q^{8} + 23 q^{9} + 42 q^{11} + 136 q^{12} + 34 q^{13} + 28 q^{14} + 74 q^{16} + 238 q^{17} - 2 q^{18} - 36 q^{19} + 70 q^{21} + 358 q^{22} + 152 q^{23}+ \cdots + 2652 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.55528 0.549873 0.274937 0.961462i \(-0.411343\pi\)
0.274937 + 0.961462i \(0.411343\pi\)
\(3\) −4.96149 −0.954839 −0.477419 0.878676i \(-0.658428\pi\)
−0.477419 + 0.878676i \(0.658428\pi\)
\(4\) −5.58112 −0.697640
\(5\) 0 0
\(6\) −7.71648 −0.525040
\(7\) 7.00000 0.377964
\(8\) −21.1224 −0.933486
\(9\) −2.38365 −0.0882832
\(10\) 0 0
\(11\) 29.8232 0.817457 0.408728 0.912656i \(-0.365972\pi\)
0.408728 + 0.912656i \(0.365972\pi\)
\(12\) 27.6906 0.666133
\(13\) 90.7316 1.93572 0.967862 0.251481i \(-0.0809174\pi\)
0.967862 + 0.251481i \(0.0809174\pi\)
\(14\) 10.8869 0.207832
\(15\) 0 0
\(16\) 11.7978 0.184341
\(17\) 29.5740 0.421927 0.210963 0.977494i \(-0.432340\pi\)
0.210963 + 0.977494i \(0.432340\pi\)
\(18\) −3.70723 −0.0485446
\(19\) −62.3278 −0.752577 −0.376289 0.926503i \(-0.622800\pi\)
−0.376289 + 0.926503i \(0.622800\pi\)
\(20\) 0 0
\(21\) −34.7304 −0.360895
\(22\) 46.3833 0.449498
\(23\) 90.6198 0.821545 0.410772 0.911738i \(-0.365259\pi\)
0.410772 + 0.911738i \(0.365259\pi\)
\(24\) 104.798 0.891329
\(25\) 0 0
\(26\) 141.113 1.06440
\(27\) 145.787 1.03913
\(28\) −39.0678 −0.263683
\(29\) 193.070 1.23628 0.618141 0.786067i \(-0.287886\pi\)
0.618141 + 0.786067i \(0.287886\pi\)
\(30\) 0 0
\(31\) −152.123 −0.881357 −0.440679 0.897665i \(-0.645262\pi\)
−0.440679 + 0.897665i \(0.645262\pi\)
\(32\) 187.328 1.03485
\(33\) −147.967 −0.780539
\(34\) 45.9957 0.232006
\(35\) 0 0
\(36\) 13.3034 0.0615899
\(37\) 102.453 0.455222 0.227611 0.973752i \(-0.426908\pi\)
0.227611 + 0.973752i \(0.426908\pi\)
\(38\) −96.9368 −0.413822
\(39\) −450.164 −1.84830
\(40\) 0 0
\(41\) −266.744 −1.01606 −0.508030 0.861340i \(-0.669626\pi\)
−0.508030 + 0.861340i \(0.669626\pi\)
\(42\) −54.0154 −0.198446
\(43\) 387.125 1.37293 0.686465 0.727163i \(-0.259162\pi\)
0.686465 + 0.727163i \(0.259162\pi\)
\(44\) −166.447 −0.570290
\(45\) 0 0
\(46\) 140.939 0.451745
\(47\) −152.298 −0.472660 −0.236330 0.971673i \(-0.575945\pi\)
−0.236330 + 0.971673i \(0.575945\pi\)
\(48\) −58.5346 −0.176016
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −146.731 −0.402872
\(52\) −506.384 −1.35044
\(53\) −81.5982 −0.211479 −0.105739 0.994394i \(-0.533721\pi\)
−0.105739 + 0.994394i \(0.533721\pi\)
\(54\) 226.738 0.571392
\(55\) 0 0
\(56\) −147.857 −0.352825
\(57\) 309.238 0.718590
\(58\) 300.277 0.679798
\(59\) −235.884 −0.520499 −0.260250 0.965541i \(-0.583805\pi\)
−0.260250 + 0.965541i \(0.583805\pi\)
\(60\) 0 0
\(61\) 510.453 1.07142 0.535712 0.844401i \(-0.320043\pi\)
0.535712 + 0.844401i \(0.320043\pi\)
\(62\) −236.593 −0.484635
\(63\) −16.6855 −0.0333679
\(64\) 196.964 0.384696
\(65\) 0 0
\(66\) −230.130 −0.429198
\(67\) −347.374 −0.633410 −0.316705 0.948524i \(-0.602577\pi\)
−0.316705 + 0.948524i \(0.602577\pi\)
\(68\) −165.056 −0.294353
\(69\) −449.609 −0.784443
\(70\) 0 0
\(71\) 317.014 0.529896 0.264948 0.964263i \(-0.414645\pi\)
0.264948 + 0.964263i \(0.414645\pi\)
\(72\) 50.3483 0.0824112
\(73\) −709.901 −1.13819 −0.569093 0.822273i \(-0.692706\pi\)
−0.569093 + 0.822273i \(0.692706\pi\)
\(74\) 159.343 0.250315
\(75\) 0 0
\(76\) 347.858 0.525028
\(77\) 208.762 0.308970
\(78\) −700.129 −1.01633
\(79\) 1062.95 1.51382 0.756908 0.653522i \(-0.226709\pi\)
0.756908 + 0.653522i \(0.226709\pi\)
\(80\) 0 0
\(81\) −658.960 −0.903923
\(82\) −414.861 −0.558704
\(83\) 503.810 0.666270 0.333135 0.942879i \(-0.391894\pi\)
0.333135 + 0.942879i \(0.391894\pi\)
\(84\) 193.834 0.251775
\(85\) 0 0
\(86\) 602.086 0.754937
\(87\) −957.914 −1.18045
\(88\) −629.937 −0.763085
\(89\) 482.342 0.574474 0.287237 0.957860i \(-0.407263\pi\)
0.287237 + 0.957860i \(0.407263\pi\)
\(90\) 0 0
\(91\) 635.121 0.731635
\(92\) −505.760 −0.573142
\(93\) 754.756 0.841554
\(94\) −236.866 −0.259903
\(95\) 0 0
\(96\) −929.425 −0.988115
\(97\) 481.167 0.503661 0.251831 0.967771i \(-0.418967\pi\)
0.251831 + 0.967771i \(0.418967\pi\)
\(98\) 76.2085 0.0785533
\(99\) −71.0879 −0.0721677
\(100\) 0 0
\(101\) 1065.65 1.04986 0.524931 0.851145i \(-0.324091\pi\)
0.524931 + 0.851145i \(0.324091\pi\)
\(102\) −228.207 −0.221528
\(103\) −94.8594 −0.0907454 −0.0453727 0.998970i \(-0.514448\pi\)
−0.0453727 + 0.998970i \(0.514448\pi\)
\(104\) −1916.47 −1.80697
\(105\) 0 0
\(106\) −126.908 −0.116286
\(107\) −1288.94 −1.16455 −0.582274 0.812993i \(-0.697837\pi\)
−0.582274 + 0.812993i \(0.697837\pi\)
\(108\) −813.652 −0.724942
\(109\) 343.006 0.301413 0.150707 0.988579i \(-0.451845\pi\)
0.150707 + 0.988579i \(0.451845\pi\)
\(110\) 0 0
\(111\) −508.321 −0.434664
\(112\) 82.5846 0.0696742
\(113\) 1444.58 1.20261 0.601306 0.799019i \(-0.294647\pi\)
0.601306 + 0.799019i \(0.294647\pi\)
\(114\) 480.951 0.395133
\(115\) 0 0
\(116\) −1077.55 −0.862479
\(117\) −216.272 −0.170892
\(118\) −366.864 −0.286208
\(119\) 207.018 0.159473
\(120\) 0 0
\(121\) −441.578 −0.331764
\(122\) 793.895 0.589147
\(123\) 1323.45 0.970173
\(124\) 849.016 0.614870
\(125\) 0 0
\(126\) −25.9506 −0.0183481
\(127\) 1786.52 1.24825 0.624125 0.781324i \(-0.285455\pi\)
0.624125 + 0.781324i \(0.285455\pi\)
\(128\) −1192.29 −0.823317
\(129\) −1920.71 −1.31093
\(130\) 0 0
\(131\) −885.502 −0.590585 −0.295293 0.955407i \(-0.595417\pi\)
−0.295293 + 0.955407i \(0.595417\pi\)
\(132\) 825.823 0.544535
\(133\) −436.294 −0.284447
\(134\) −540.263 −0.348295
\(135\) 0 0
\(136\) −624.674 −0.393863
\(137\) 3019.24 1.88285 0.941426 0.337219i \(-0.109486\pi\)
0.941426 + 0.337219i \(0.109486\pi\)
\(138\) −699.266 −0.431344
\(139\) −2725.65 −1.66322 −0.831608 0.555363i \(-0.812579\pi\)
−0.831608 + 0.555363i \(0.812579\pi\)
\(140\) 0 0
\(141\) 755.626 0.451314
\(142\) 493.043 0.291375
\(143\) 2705.90 1.58237
\(144\) −28.1218 −0.0162742
\(145\) 0 0
\(146\) −1104.09 −0.625858
\(147\) −243.113 −0.136406
\(148\) −571.804 −0.317581
\(149\) 2963.88 1.62960 0.814801 0.579741i \(-0.196846\pi\)
0.814801 + 0.579741i \(0.196846\pi\)
\(150\) 0 0
\(151\) 434.482 0.234157 0.117078 0.993123i \(-0.462647\pi\)
0.117078 + 0.993123i \(0.462647\pi\)
\(152\) 1316.51 0.702520
\(153\) −70.4940 −0.0372490
\(154\) 324.683 0.169894
\(155\) 0 0
\(156\) 2512.42 1.28945
\(157\) 496.409 0.252342 0.126171 0.992008i \(-0.459731\pi\)
0.126171 + 0.992008i \(0.459731\pi\)
\(158\) 1653.18 0.832406
\(159\) 404.848 0.201928
\(160\) 0 0
\(161\) 634.339 0.310515
\(162\) −1024.86 −0.497043
\(163\) −2966.73 −1.42560 −0.712799 0.701368i \(-0.752573\pi\)
−0.712799 + 0.701368i \(0.752573\pi\)
\(164\) 1488.73 0.708843
\(165\) 0 0
\(166\) 783.564 0.366364
\(167\) −1295.44 −0.600265 −0.300132 0.953898i \(-0.597031\pi\)
−0.300132 + 0.953898i \(0.597031\pi\)
\(168\) 733.589 0.336891
\(169\) 6035.23 2.74703
\(170\) 0 0
\(171\) 148.567 0.0664399
\(172\) −2160.59 −0.957810
\(173\) 3195.32 1.40425 0.702126 0.712052i \(-0.252234\pi\)
0.702126 + 0.712052i \(0.252234\pi\)
\(174\) −1489.82 −0.649098
\(175\) 0 0
\(176\) 351.848 0.150691
\(177\) 1170.33 0.496993
\(178\) 750.176 0.315888
\(179\) −4294.90 −1.79338 −0.896692 0.442655i \(-0.854037\pi\)
−0.896692 + 0.442655i \(0.854037\pi\)
\(180\) 0 0
\(181\) −1017.02 −0.417648 −0.208824 0.977953i \(-0.566964\pi\)
−0.208824 + 0.977953i \(0.566964\pi\)
\(182\) 987.789 0.402306
\(183\) −2532.61 −1.02304
\(184\) −1914.11 −0.766901
\(185\) 0 0
\(186\) 1173.85 0.462748
\(187\) 881.991 0.344907
\(188\) 849.995 0.329746
\(189\) 1020.51 0.392756
\(190\) 0 0
\(191\) −1072.62 −0.406347 −0.203174 0.979143i \(-0.565126\pi\)
−0.203174 + 0.979143i \(0.565126\pi\)
\(192\) −977.235 −0.367322
\(193\) −1382.74 −0.515710 −0.257855 0.966184i \(-0.583016\pi\)
−0.257855 + 0.966184i \(0.583016\pi\)
\(194\) 748.348 0.276950
\(195\) 0 0
\(196\) −273.475 −0.0996628
\(197\) 933.061 0.337451 0.168725 0.985663i \(-0.446035\pi\)
0.168725 + 0.985663i \(0.446035\pi\)
\(198\) −110.561 −0.0396831
\(199\) 126.253 0.0449740 0.0224870 0.999747i \(-0.492842\pi\)
0.0224870 + 0.999747i \(0.492842\pi\)
\(200\) 0 0
\(201\) 1723.49 0.604805
\(202\) 1657.38 0.577291
\(203\) 1351.49 0.467271
\(204\) 818.923 0.281059
\(205\) 0 0
\(206\) −147.533 −0.0498985
\(207\) −216.006 −0.0725286
\(208\) 1070.43 0.356833
\(209\) −1858.81 −0.615199
\(210\) 0 0
\(211\) −862.984 −0.281565 −0.140783 0.990041i \(-0.544962\pi\)
−0.140783 + 0.990041i \(0.544962\pi\)
\(212\) 455.409 0.147536
\(213\) −1572.86 −0.505965
\(214\) −2004.66 −0.640353
\(215\) 0 0
\(216\) −3079.36 −0.970018
\(217\) −1064.86 −0.333122
\(218\) 533.469 0.165739
\(219\) 3522.16 1.08678
\(220\) 0 0
\(221\) 2683.30 0.816734
\(222\) −790.579 −0.239010
\(223\) −4533.19 −1.36128 −0.680639 0.732619i \(-0.738298\pi\)
−0.680639 + 0.732619i \(0.738298\pi\)
\(224\) 1311.30 0.391137
\(225\) 0 0
\(226\) 2246.73 0.661284
\(227\) 3806.46 1.11297 0.556484 0.830858i \(-0.312150\pi\)
0.556484 + 0.830858i \(0.312150\pi\)
\(228\) −1725.90 −0.501317
\(229\) −3073.77 −0.886989 −0.443495 0.896277i \(-0.646261\pi\)
−0.443495 + 0.896277i \(0.646261\pi\)
\(230\) 0 0
\(231\) −1035.77 −0.295016
\(232\) −4078.10 −1.15405
\(233\) 1527.66 0.429530 0.214765 0.976666i \(-0.431101\pi\)
0.214765 + 0.976666i \(0.431101\pi\)
\(234\) −336.363 −0.0939689
\(235\) 0 0
\(236\) 1316.49 0.363121
\(237\) −5273.82 −1.44545
\(238\) 321.970 0.0876900
\(239\) −2356.10 −0.637672 −0.318836 0.947810i \(-0.603292\pi\)
−0.318836 + 0.947810i \(0.603292\pi\)
\(240\) 0 0
\(241\) −6297.25 −1.68316 −0.841581 0.540132i \(-0.818374\pi\)
−0.841581 + 0.540132i \(0.818374\pi\)
\(242\) −686.776 −0.182428
\(243\) −666.817 −0.176034
\(244\) −2848.90 −0.747467
\(245\) 0 0
\(246\) 2058.33 0.533472
\(247\) −5655.10 −1.45678
\(248\) 3213.20 0.822735
\(249\) −2499.65 −0.636180
\(250\) 0 0
\(251\) −3531.12 −0.887978 −0.443989 0.896032i \(-0.646437\pi\)
−0.443989 + 0.896032i \(0.646437\pi\)
\(252\) 93.1239 0.0232788
\(253\) 2702.57 0.671578
\(254\) 2778.53 0.686379
\(255\) 0 0
\(256\) −3430.05 −0.837415
\(257\) −2186.27 −0.530645 −0.265323 0.964160i \(-0.585478\pi\)
−0.265323 + 0.964160i \(0.585478\pi\)
\(258\) −2987.24 −0.720843
\(259\) 717.173 0.172058
\(260\) 0 0
\(261\) −460.210 −0.109143
\(262\) −1377.20 −0.324747
\(263\) −2432.29 −0.570271 −0.285135 0.958487i \(-0.592039\pi\)
−0.285135 + 0.958487i \(0.592039\pi\)
\(264\) 3125.42 0.728623
\(265\) 0 0
\(266\) −678.558 −0.156410
\(267\) −2393.14 −0.548530
\(268\) 1938.74 0.441892
\(269\) −1025.45 −0.232428 −0.116214 0.993224i \(-0.537076\pi\)
−0.116214 + 0.993224i \(0.537076\pi\)
\(270\) 0 0
\(271\) 3859.89 0.865209 0.432604 0.901584i \(-0.357595\pi\)
0.432604 + 0.901584i \(0.357595\pi\)
\(272\) 348.908 0.0777782
\(273\) −3151.15 −0.698594
\(274\) 4695.75 1.03533
\(275\) 0 0
\(276\) 2509.32 0.547258
\(277\) −5352.31 −1.16097 −0.580485 0.814271i \(-0.697137\pi\)
−0.580485 + 0.814271i \(0.697137\pi\)
\(278\) −4239.15 −0.914558
\(279\) 362.607 0.0778090
\(280\) 0 0
\(281\) 1405.89 0.298464 0.149232 0.988802i \(-0.452320\pi\)
0.149232 + 0.988802i \(0.452320\pi\)
\(282\) 1175.21 0.248165
\(283\) −1886.24 −0.396203 −0.198102 0.980181i \(-0.563478\pi\)
−0.198102 + 0.980181i \(0.563478\pi\)
\(284\) −1769.29 −0.369676
\(285\) 0 0
\(286\) 4208.43 0.870104
\(287\) −1867.21 −0.384034
\(288\) −446.523 −0.0913599
\(289\) −4038.38 −0.821978
\(290\) 0 0
\(291\) −2387.31 −0.480915
\(292\) 3962.04 0.794044
\(293\) 6265.03 1.24917 0.624585 0.780956i \(-0.285268\pi\)
0.624585 + 0.780956i \(0.285268\pi\)
\(294\) −378.108 −0.0750057
\(295\) 0 0
\(296\) −2164.06 −0.424944
\(297\) 4347.82 0.849448
\(298\) 4609.65 0.896074
\(299\) 8222.08 1.59028
\(300\) 0 0
\(301\) 2709.87 0.518919
\(302\) 675.739 0.128756
\(303\) −5287.21 −1.00245
\(304\) −735.331 −0.138731
\(305\) 0 0
\(306\) −109.638 −0.0204822
\(307\) −1665.50 −0.309626 −0.154813 0.987944i \(-0.549478\pi\)
−0.154813 + 0.987944i \(0.549478\pi\)
\(308\) −1165.13 −0.215549
\(309\) 470.644 0.0866472
\(310\) 0 0
\(311\) 2493.66 0.454669 0.227335 0.973817i \(-0.426999\pi\)
0.227335 + 0.973817i \(0.426999\pi\)
\(312\) 9508.53 1.72537
\(313\) −2859.53 −0.516390 −0.258195 0.966093i \(-0.583128\pi\)
−0.258195 + 0.966093i \(0.583128\pi\)
\(314\) 772.052 0.138756
\(315\) 0 0
\(316\) −5932.46 −1.05610
\(317\) 8154.58 1.44482 0.722409 0.691466i \(-0.243035\pi\)
0.722409 + 0.691466i \(0.243035\pi\)
\(318\) 629.651 0.111035
\(319\) 5757.96 1.01061
\(320\) 0 0
\(321\) 6395.06 1.11195
\(322\) 986.571 0.170744
\(323\) −1843.28 −0.317532
\(324\) 3677.73 0.630612
\(325\) 0 0
\(326\) −4614.09 −0.783898
\(327\) −1701.82 −0.287801
\(328\) 5634.27 0.948477
\(329\) −1066.09 −0.178649
\(330\) 0 0
\(331\) 164.125 0.0272541 0.0136271 0.999907i \(-0.495662\pi\)
0.0136271 + 0.999907i \(0.495662\pi\)
\(332\) −2811.83 −0.464816
\(333\) −244.213 −0.0401885
\(334\) −2014.77 −0.330069
\(335\) 0 0
\(336\) −409.743 −0.0665276
\(337\) 5015.35 0.810692 0.405346 0.914163i \(-0.367151\pi\)
0.405346 + 0.914163i \(0.367151\pi\)
\(338\) 9386.44 1.51052
\(339\) −7167.29 −1.14830
\(340\) 0 0
\(341\) −4536.79 −0.720472
\(342\) 231.063 0.0365335
\(343\) 343.000 0.0539949
\(344\) −8177.00 −1.28161
\(345\) 0 0
\(346\) 4969.60 0.772161
\(347\) −10679.9 −1.65224 −0.826122 0.563492i \(-0.809458\pi\)
−0.826122 + 0.563492i \(0.809458\pi\)
\(348\) 5346.23 0.823529
\(349\) −7727.85 −1.18528 −0.592639 0.805468i \(-0.701914\pi\)
−0.592639 + 0.805468i \(0.701914\pi\)
\(350\) 0 0
\(351\) 13227.5 2.01148
\(352\) 5586.71 0.845946
\(353\) −3214.61 −0.484693 −0.242346 0.970190i \(-0.577917\pi\)
−0.242346 + 0.970190i \(0.577917\pi\)
\(354\) 1820.19 0.273283
\(355\) 0 0
\(356\) −2692.01 −0.400776
\(357\) −1027.12 −0.152271
\(358\) −6679.75 −0.986134
\(359\) 104.088 0.0153023 0.00765116 0.999971i \(-0.497565\pi\)
0.00765116 + 0.999971i \(0.497565\pi\)
\(360\) 0 0
\(361\) −2974.25 −0.433628
\(362\) −1581.74 −0.229653
\(363\) 2190.88 0.316781
\(364\) −3544.69 −0.510418
\(365\) 0 0
\(366\) −3938.90 −0.562540
\(367\) 2285.33 0.325049 0.162525 0.986704i \(-0.448036\pi\)
0.162525 + 0.986704i \(0.448036\pi\)
\(368\) 1069.11 0.151444
\(369\) 635.824 0.0897010
\(370\) 0 0
\(371\) −571.187 −0.0799314
\(372\) −4212.38 −0.587101
\(373\) 5810.11 0.806531 0.403265 0.915083i \(-0.367875\pi\)
0.403265 + 0.915083i \(0.367875\pi\)
\(374\) 1371.74 0.189655
\(375\) 0 0
\(376\) 3216.90 0.441221
\(377\) 17517.5 2.39310
\(378\) 1587.17 0.215966
\(379\) −1457.82 −0.197581 −0.0987904 0.995108i \(-0.531497\pi\)
−0.0987904 + 0.995108i \(0.531497\pi\)
\(380\) 0 0
\(381\) −8863.79 −1.19188
\(382\) −1668.22 −0.223439
\(383\) 775.614 0.103478 0.0517389 0.998661i \(-0.483524\pi\)
0.0517389 + 0.998661i \(0.483524\pi\)
\(384\) 5915.53 0.786134
\(385\) 0 0
\(386\) −2150.54 −0.283575
\(387\) −922.769 −0.121207
\(388\) −2685.45 −0.351374
\(389\) 9160.87 1.19402 0.597011 0.802233i \(-0.296355\pi\)
0.597011 + 0.802233i \(0.296355\pi\)
\(390\) 0 0
\(391\) 2679.99 0.346632
\(392\) −1035.00 −0.133355
\(393\) 4393.41 0.563913
\(394\) 1451.17 0.185555
\(395\) 0 0
\(396\) 396.750 0.0503471
\(397\) 2306.95 0.291643 0.145822 0.989311i \(-0.453417\pi\)
0.145822 + 0.989311i \(0.453417\pi\)
\(398\) 196.358 0.0247300
\(399\) 2164.67 0.271601
\(400\) 0 0
\(401\) 5554.28 0.691689 0.345845 0.938292i \(-0.387592\pi\)
0.345845 + 0.938292i \(0.387592\pi\)
\(402\) 2680.51 0.332566
\(403\) −13802.4 −1.70607
\(404\) −5947.51 −0.732425
\(405\) 0 0
\(406\) 2101.94 0.256940
\(407\) 3055.48 0.372125
\(408\) 3099.31 0.376075
\(409\) 6860.22 0.829379 0.414690 0.909963i \(-0.363890\pi\)
0.414690 + 0.909963i \(0.363890\pi\)
\(410\) 0 0
\(411\) −14979.9 −1.79782
\(412\) 529.422 0.0633076
\(413\) −1651.19 −0.196730
\(414\) −335.948 −0.0398815
\(415\) 0 0
\(416\) 16996.6 2.00319
\(417\) 13523.3 1.58810
\(418\) −2890.96 −0.338282
\(419\) 6261.62 0.730072 0.365036 0.930993i \(-0.381057\pi\)
0.365036 + 0.930993i \(0.381057\pi\)
\(420\) 0 0
\(421\) −12589.2 −1.45739 −0.728694 0.684840i \(-0.759872\pi\)
−0.728694 + 0.684840i \(0.759872\pi\)
\(422\) −1342.18 −0.154825
\(423\) 363.025 0.0417279
\(424\) 1723.55 0.197412
\(425\) 0 0
\(426\) −2446.23 −0.278216
\(427\) 3573.17 0.404960
\(428\) 7193.73 0.812434
\(429\) −13425.3 −1.51091
\(430\) 0 0
\(431\) 13362.1 1.49334 0.746670 0.665195i \(-0.231652\pi\)
0.746670 + 0.665195i \(0.231652\pi\)
\(432\) 1719.96 0.191555
\(433\) −13554.8 −1.50439 −0.752194 0.658941i \(-0.771005\pi\)
−0.752194 + 0.658941i \(0.771005\pi\)
\(434\) −1656.15 −0.183175
\(435\) 0 0
\(436\) −1914.36 −0.210278
\(437\) −5648.13 −0.618276
\(438\) 5477.94 0.597593
\(439\) −9039.11 −0.982718 −0.491359 0.870957i \(-0.663500\pi\)
−0.491359 + 0.870957i \(0.663500\pi\)
\(440\) 0 0
\(441\) −116.799 −0.0126119
\(442\) 4173.27 0.449100
\(443\) 287.745 0.0308604 0.0154302 0.999881i \(-0.495088\pi\)
0.0154302 + 0.999881i \(0.495088\pi\)
\(444\) 2837.00 0.303239
\(445\) 0 0
\(446\) −7050.37 −0.748530
\(447\) −14705.3 −1.55601
\(448\) 1378.75 0.145401
\(449\) 672.823 0.0707182 0.0353591 0.999375i \(-0.488743\pi\)
0.0353591 + 0.999375i \(0.488743\pi\)
\(450\) 0 0
\(451\) −7955.16 −0.830585
\(452\) −8062.39 −0.838989
\(453\) −2155.68 −0.223582
\(454\) 5920.10 0.611991
\(455\) 0 0
\(456\) −6531.85 −0.670794
\(457\) −6272.56 −0.642052 −0.321026 0.947070i \(-0.604028\pi\)
−0.321026 + 0.947070i \(0.604028\pi\)
\(458\) −4780.56 −0.487731
\(459\) 4311.49 0.438439
\(460\) 0 0
\(461\) 3967.12 0.400796 0.200398 0.979715i \(-0.435776\pi\)
0.200398 + 0.979715i \(0.435776\pi\)
\(462\) −1610.91 −0.162221
\(463\) 14898.3 1.49543 0.747716 0.664019i \(-0.231151\pi\)
0.747716 + 0.664019i \(0.231151\pi\)
\(464\) 2277.80 0.227897
\(465\) 0 0
\(466\) 2375.93 0.236187
\(467\) −7371.22 −0.730405 −0.365203 0.930928i \(-0.619000\pi\)
−0.365203 + 0.930928i \(0.619000\pi\)
\(468\) 1207.04 0.119221
\(469\) −2431.62 −0.239407
\(470\) 0 0
\(471\) −2462.93 −0.240946
\(472\) 4982.43 0.485879
\(473\) 11545.3 1.12231
\(474\) −8202.25 −0.794814
\(475\) 0 0
\(476\) −1155.39 −0.111255
\(477\) 194.501 0.0186700
\(478\) −3664.39 −0.350638
\(479\) 11934.3 1.13840 0.569198 0.822201i \(-0.307254\pi\)
0.569198 + 0.822201i \(0.307254\pi\)
\(480\) 0 0
\(481\) 9295.76 0.881185
\(482\) −9793.97 −0.925525
\(483\) −3147.26 −0.296492
\(484\) 2464.50 0.231452
\(485\) 0 0
\(486\) −1037.08 −0.0967965
\(487\) 4462.53 0.415229 0.207614 0.978211i \(-0.433430\pi\)
0.207614 + 0.978211i \(0.433430\pi\)
\(488\) −10782.0 −1.00016
\(489\) 14719.4 1.36122
\(490\) 0 0
\(491\) 7577.70 0.696491 0.348245 0.937403i \(-0.386778\pi\)
0.348245 + 0.937403i \(0.386778\pi\)
\(492\) −7386.31 −0.676831
\(493\) 5709.85 0.521620
\(494\) −8795.24 −0.801045
\(495\) 0 0
\(496\) −1794.72 −0.162470
\(497\) 2219.09 0.200282
\(498\) −3887.64 −0.349818
\(499\) −11422.5 −1.02474 −0.512368 0.858766i \(-0.671231\pi\)
−0.512368 + 0.858766i \(0.671231\pi\)
\(500\) 0 0
\(501\) 6427.31 0.573156
\(502\) −5491.87 −0.488275
\(503\) 6264.74 0.555330 0.277665 0.960678i \(-0.410440\pi\)
0.277665 + 0.960678i \(0.410440\pi\)
\(504\) 352.438 0.0311485
\(505\) 0 0
\(506\) 4203.24 0.369282
\(507\) −29943.7 −2.62297
\(508\) −9970.77 −0.870829
\(509\) −6895.92 −0.600504 −0.300252 0.953860i \(-0.597071\pi\)
−0.300252 + 0.953860i \(0.597071\pi\)
\(510\) 0 0
\(511\) −4969.31 −0.430194
\(512\) 4203.64 0.362844
\(513\) −9086.55 −0.782029
\(514\) −3400.26 −0.291788
\(515\) 0 0
\(516\) 10719.7 0.914554
\(517\) −4542.02 −0.386379
\(518\) 1115.40 0.0946100
\(519\) −15853.5 −1.34083
\(520\) 0 0
\(521\) −12517.6 −1.05260 −0.526302 0.850297i \(-0.676422\pi\)
−0.526302 + 0.850297i \(0.676422\pi\)
\(522\) −715.754 −0.0600148
\(523\) 9820.31 0.821055 0.410528 0.911848i \(-0.365345\pi\)
0.410528 + 0.911848i \(0.365345\pi\)
\(524\) 4942.09 0.412016
\(525\) 0 0
\(526\) −3782.88 −0.313577
\(527\) −4498.88 −0.371868
\(528\) −1745.69 −0.143885
\(529\) −3955.05 −0.325064
\(530\) 0 0
\(531\) 562.263 0.0459513
\(532\) 2435.01 0.198442
\(533\) −24202.1 −1.96681
\(534\) −3721.99 −0.301622
\(535\) 0 0
\(536\) 7337.37 0.591280
\(537\) 21309.1 1.71239
\(538\) −1594.87 −0.127806
\(539\) 1461.34 0.116780
\(540\) 0 0
\(541\) −1864.46 −0.148169 −0.0740845 0.997252i \(-0.523603\pi\)
−0.0740845 + 0.997252i \(0.523603\pi\)
\(542\) 6003.19 0.475755
\(543\) 5045.91 0.398786
\(544\) 5540.04 0.436631
\(545\) 0 0
\(546\) −4900.90 −0.384138
\(547\) −13351.8 −1.04366 −0.521830 0.853050i \(-0.674750\pi\)
−0.521830 + 0.853050i \(0.674750\pi\)
\(548\) −16850.7 −1.31355
\(549\) −1216.74 −0.0945887
\(550\) 0 0
\(551\) −12033.6 −0.930398
\(552\) 9496.81 0.732267
\(553\) 7440.66 0.572168
\(554\) −8324.31 −0.638386
\(555\) 0 0
\(556\) 15212.2 1.16033
\(557\) 4423.73 0.336516 0.168258 0.985743i \(-0.446186\pi\)
0.168258 + 0.985743i \(0.446186\pi\)
\(558\) 563.954 0.0427851
\(559\) 35124.5 2.65761
\(560\) 0 0
\(561\) −4375.99 −0.329330
\(562\) 2186.55 0.164117
\(563\) −2690.20 −0.201383 −0.100691 0.994918i \(-0.532105\pi\)
−0.100691 + 0.994918i \(0.532105\pi\)
\(564\) −4217.24 −0.314854
\(565\) 0 0
\(566\) −2933.63 −0.217861
\(567\) −4612.72 −0.341651
\(568\) −6696.08 −0.494650
\(569\) −14143.3 −1.04203 −0.521016 0.853547i \(-0.674447\pi\)
−0.521016 + 0.853547i \(0.674447\pi\)
\(570\) 0 0
\(571\) 10955.4 0.802924 0.401462 0.915876i \(-0.368502\pi\)
0.401462 + 0.915876i \(0.368502\pi\)
\(572\) −15102.0 −1.10393
\(573\) 5321.81 0.387996
\(574\) −2904.02 −0.211170
\(575\) 0 0
\(576\) −469.493 −0.0339622
\(577\) −469.298 −0.0338599 −0.0169299 0.999857i \(-0.505389\pi\)
−0.0169299 + 0.999857i \(0.505389\pi\)
\(578\) −6280.79 −0.451984
\(579\) 6860.46 0.492419
\(580\) 0 0
\(581\) 3526.67 0.251826
\(582\) −3712.92 −0.264442
\(583\) −2433.52 −0.172875
\(584\) 14994.8 1.06248
\(585\) 0 0
\(586\) 9743.85 0.686885
\(587\) 20050.0 1.40980 0.704899 0.709308i \(-0.250992\pi\)
0.704899 + 0.709308i \(0.250992\pi\)
\(588\) 1356.84 0.0951619
\(589\) 9481.48 0.663289
\(590\) 0 0
\(591\) −4629.37 −0.322211
\(592\) 1208.72 0.0839160
\(593\) 26534.2 1.83749 0.918744 0.394855i \(-0.129205\pi\)
0.918744 + 0.394855i \(0.129205\pi\)
\(594\) 6762.06 0.467089
\(595\) 0 0
\(596\) −16541.8 −1.13687
\(597\) −626.401 −0.0429429
\(598\) 12787.6 0.874455
\(599\) 6886.62 0.469749 0.234875 0.972026i \(-0.424532\pi\)
0.234875 + 0.972026i \(0.424532\pi\)
\(600\) 0 0
\(601\) 19861.0 1.34800 0.673999 0.738733i \(-0.264575\pi\)
0.673999 + 0.738733i \(0.264575\pi\)
\(602\) 4214.60 0.285339
\(603\) 828.017 0.0559195
\(604\) −2424.89 −0.163357
\(605\) 0 0
\(606\) −8223.06 −0.551220
\(607\) −16703.0 −1.11689 −0.558445 0.829541i \(-0.688602\pi\)
−0.558445 + 0.829541i \(0.688602\pi\)
\(608\) −11675.7 −0.778805
\(609\) −6705.40 −0.446168
\(610\) 0 0
\(611\) −13818.3 −0.914939
\(612\) 393.435 0.0259864
\(613\) 20753.9 1.36745 0.683723 0.729742i \(-0.260360\pi\)
0.683723 + 0.729742i \(0.260360\pi\)
\(614\) −2590.32 −0.170255
\(615\) 0 0
\(616\) −4409.56 −0.288419
\(617\) 6769.53 0.441703 0.220852 0.975307i \(-0.429116\pi\)
0.220852 + 0.975307i \(0.429116\pi\)
\(618\) 731.981 0.0476450
\(619\) −10307.2 −0.669272 −0.334636 0.942347i \(-0.608613\pi\)
−0.334636 + 0.942347i \(0.608613\pi\)
\(620\) 0 0
\(621\) 13211.1 0.853696
\(622\) 3878.32 0.250010
\(623\) 3376.40 0.217131
\(624\) −5310.94 −0.340718
\(625\) 0 0
\(626\) −4447.36 −0.283949
\(627\) 9222.47 0.587416
\(628\) −2770.51 −0.176044
\(629\) 3029.96 0.192070
\(630\) 0 0
\(631\) 20158.1 1.27176 0.635879 0.771789i \(-0.280638\pi\)
0.635879 + 0.771789i \(0.280638\pi\)
\(632\) −22452.1 −1.41313
\(633\) 4281.69 0.268849
\(634\) 12682.6 0.794466
\(635\) 0 0
\(636\) −2259.51 −0.140873
\(637\) 4445.85 0.276532
\(638\) 8955.21 0.555706
\(639\) −755.648 −0.0467809
\(640\) 0 0
\(641\) −9370.22 −0.577381 −0.288691 0.957422i \(-0.593220\pi\)
−0.288691 + 0.957422i \(0.593220\pi\)
\(642\) 9946.08 0.611434
\(643\) 13605.3 0.834434 0.417217 0.908807i \(-0.363006\pi\)
0.417217 + 0.908807i \(0.363006\pi\)
\(644\) −3540.32 −0.216627
\(645\) 0 0
\(646\) −2866.81 −0.174602
\(647\) 17228.8 1.04689 0.523443 0.852061i \(-0.324647\pi\)
0.523443 + 0.852061i \(0.324647\pi\)
\(648\) 13918.8 0.843800
\(649\) −7034.80 −0.425486
\(650\) 0 0
\(651\) 5283.29 0.318078
\(652\) 16557.7 0.994554
\(653\) −24886.7 −1.49141 −0.745706 0.666275i \(-0.767888\pi\)
−0.745706 + 0.666275i \(0.767888\pi\)
\(654\) −2646.80 −0.158254
\(655\) 0 0
\(656\) −3146.99 −0.187301
\(657\) 1692.15 0.100483
\(658\) −1658.06 −0.0982340
\(659\) −22993.3 −1.35917 −0.679583 0.733598i \(-0.737839\pi\)
−0.679583 + 0.733598i \(0.737839\pi\)
\(660\) 0 0
\(661\) −10136.8 −0.596483 −0.298241 0.954490i \(-0.596400\pi\)
−0.298241 + 0.954490i \(0.596400\pi\)
\(662\) 255.259 0.0149863
\(663\) −13313.1 −0.779849
\(664\) −10641.7 −0.621954
\(665\) 0 0
\(666\) −379.818 −0.0220986
\(667\) 17496.0 1.01566
\(668\) 7230.01 0.418769
\(669\) 22491.4 1.29980
\(670\) 0 0
\(671\) 15223.3 0.875843
\(672\) −6505.97 −0.373472
\(673\) 21980.8 1.25899 0.629494 0.777006i \(-0.283262\pi\)
0.629494 + 0.777006i \(0.283262\pi\)
\(674\) 7800.25 0.445778
\(675\) 0 0
\(676\) −33683.3 −1.91644
\(677\) 30956.4 1.75739 0.878695 0.477384i \(-0.158415\pi\)
0.878695 + 0.477384i \(0.158415\pi\)
\(678\) −11147.1 −0.631419
\(679\) 3368.17 0.190366
\(680\) 0 0
\(681\) −18885.7 −1.06270
\(682\) −7055.96 −0.396168
\(683\) −22895.4 −1.28268 −0.641338 0.767259i \(-0.721620\pi\)
−0.641338 + 0.767259i \(0.721620\pi\)
\(684\) −829.172 −0.0463511
\(685\) 0 0
\(686\) 533.460 0.0296904
\(687\) 15250.5 0.846931
\(688\) 4567.22 0.253087
\(689\) −7403.53 −0.409364
\(690\) 0 0
\(691\) −21418.0 −1.17913 −0.589565 0.807721i \(-0.700701\pi\)
−0.589565 + 0.807721i \(0.700701\pi\)
\(692\) −17833.5 −0.979662
\(693\) −497.615 −0.0272768
\(694\) −16610.2 −0.908524
\(695\) 0 0
\(696\) 20233.4 1.10193
\(697\) −7888.69 −0.428702
\(698\) −12018.9 −0.651753
\(699\) −7579.47 −0.410132
\(700\) 0 0
\(701\) −3444.75 −0.185601 −0.0928007 0.995685i \(-0.529582\pi\)
−0.0928007 + 0.995685i \(0.529582\pi\)
\(702\) 20572.3 1.10606
\(703\) −6385.69 −0.342590
\(704\) 5874.10 0.314472
\(705\) 0 0
\(706\) −4999.61 −0.266519
\(707\) 7459.55 0.396811
\(708\) −6531.77 −0.346722
\(709\) −5221.70 −0.276594 −0.138297 0.990391i \(-0.544163\pi\)
−0.138297 + 0.990391i \(0.544163\pi\)
\(710\) 0 0
\(711\) −2533.70 −0.133644
\(712\) −10188.2 −0.536264
\(713\) −13785.3 −0.724075
\(714\) −1597.45 −0.0837298
\(715\) 0 0
\(716\) 23970.3 1.25114
\(717\) 11689.8 0.608874
\(718\) 161.885 0.00841433
\(719\) −13990.0 −0.725645 −0.362822 0.931858i \(-0.618187\pi\)
−0.362822 + 0.931858i \(0.618187\pi\)
\(720\) 0 0
\(721\) −664.016 −0.0342985
\(722\) −4625.78 −0.238440
\(723\) 31243.7 1.60715
\(724\) 5676.09 0.291368
\(725\) 0 0
\(726\) 3407.43 0.174189
\(727\) 874.820 0.0446290 0.0223145 0.999751i \(-0.492896\pi\)
0.0223145 + 0.999751i \(0.492896\pi\)
\(728\) −13415.3 −0.682971
\(729\) 21100.3 1.07201
\(730\) 0 0
\(731\) 11448.8 0.579276
\(732\) 14134.8 0.713711
\(733\) 5261.49 0.265126 0.132563 0.991175i \(-0.457679\pi\)
0.132563 + 0.991175i \(0.457679\pi\)
\(734\) 3554.31 0.178736
\(735\) 0 0
\(736\) 16975.6 0.850176
\(737\) −10359.8 −0.517786
\(738\) 988.881 0.0493241
\(739\) 4697.49 0.233829 0.116915 0.993142i \(-0.462700\pi\)
0.116915 + 0.993142i \(0.462700\pi\)
\(740\) 0 0
\(741\) 28057.7 1.39099
\(742\) −888.354 −0.0439521
\(743\) −5710.88 −0.281981 −0.140990 0.990011i \(-0.545029\pi\)
−0.140990 + 0.990011i \(0.545029\pi\)
\(744\) −15942.2 −0.785579
\(745\) 0 0
\(746\) 9036.32 0.443490
\(747\) −1200.91 −0.0588204
\(748\) −4922.49 −0.240621
\(749\) −9022.58 −0.440158
\(750\) 0 0
\(751\) −22319.1 −1.08447 −0.542234 0.840228i \(-0.682421\pi\)
−0.542234 + 0.840228i \(0.682421\pi\)
\(752\) −1796.79 −0.0871304
\(753\) 17519.6 0.847875
\(754\) 27244.6 1.31590
\(755\) 0 0
\(756\) −5695.56 −0.274002
\(757\) −18686.6 −0.897192 −0.448596 0.893735i \(-0.648076\pi\)
−0.448596 + 0.893735i \(0.648076\pi\)
\(758\) −2267.31 −0.108644
\(759\) −13408.8 −0.641248
\(760\) 0 0
\(761\) −10187.1 −0.485259 −0.242630 0.970119i \(-0.578010\pi\)
−0.242630 + 0.970119i \(0.578010\pi\)
\(762\) −13785.6 −0.655382
\(763\) 2401.04 0.113923
\(764\) 5986.44 0.283484
\(765\) 0 0
\(766\) 1206.29 0.0568997
\(767\) −21402.1 −1.00754
\(768\) 17018.2 0.799596
\(769\) 3239.30 0.151901 0.0759506 0.997112i \(-0.475801\pi\)
0.0759506 + 0.997112i \(0.475801\pi\)
\(770\) 0 0
\(771\) 10847.2 0.506681
\(772\) 7717.24 0.359779
\(773\) −7855.19 −0.365500 −0.182750 0.983159i \(-0.558500\pi\)
−0.182750 + 0.983159i \(0.558500\pi\)
\(774\) −1435.16 −0.0666483
\(775\) 0 0
\(776\) −10163.4 −0.470161
\(777\) −3558.25 −0.164288
\(778\) 14247.7 0.656560
\(779\) 16625.6 0.764663
\(780\) 0 0
\(781\) 9454.35 0.433167
\(782\) 4168.12 0.190603
\(783\) 28147.0 1.28466
\(784\) 578.092 0.0263344
\(785\) 0 0
\(786\) 6832.96 0.310081
\(787\) 15718.5 0.711948 0.355974 0.934496i \(-0.384149\pi\)
0.355974 + 0.934496i \(0.384149\pi\)
\(788\) −5207.52 −0.235419
\(789\) 12067.8 0.544517
\(790\) 0 0
\(791\) 10112.1 0.454544
\(792\) 1501.55 0.0673676
\(793\) 46314.2 2.07398
\(794\) 3587.94 0.160367
\(795\) 0 0
\(796\) −704.631 −0.0313756
\(797\) −9616.93 −0.427414 −0.213707 0.976898i \(-0.568554\pi\)
−0.213707 + 0.976898i \(0.568554\pi\)
\(798\) 3366.66 0.149346
\(799\) −4504.07 −0.199428
\(800\) 0 0
\(801\) −1149.73 −0.0507164
\(802\) 8638.43 0.380341
\(803\) −21171.5 −0.930418
\(804\) −9619.01 −0.421936
\(805\) 0 0
\(806\) −21466.5 −0.938119
\(807\) 5087.78 0.221931
\(808\) −22509.1 −0.980032
\(809\) −3533.48 −0.153561 −0.0767803 0.997048i \(-0.524464\pi\)
−0.0767803 + 0.997048i \(0.524464\pi\)
\(810\) 0 0
\(811\) −19156.3 −0.829432 −0.414716 0.909951i \(-0.636119\pi\)
−0.414716 + 0.909951i \(0.636119\pi\)
\(812\) −7542.82 −0.325987
\(813\) −19150.8 −0.826135
\(814\) 4752.12 0.204621
\(815\) 0 0
\(816\) −1731.10 −0.0742657
\(817\) −24128.6 −1.03324
\(818\) 10669.5 0.456053
\(819\) −1513.90 −0.0645911
\(820\) 0 0
\(821\) 10117.5 0.430090 0.215045 0.976604i \(-0.431010\pi\)
0.215045 + 0.976604i \(0.431010\pi\)
\(822\) −23297.9 −0.988573
\(823\) −45130.4 −1.91148 −0.955739 0.294217i \(-0.904941\pi\)
−0.955739 + 0.294217i \(0.904941\pi\)
\(824\) 2003.66 0.0847096
\(825\) 0 0
\(826\) −2568.05 −0.108177
\(827\) −33833.7 −1.42263 −0.711313 0.702875i \(-0.751899\pi\)
−0.711313 + 0.702875i \(0.751899\pi\)
\(828\) 1205.55 0.0505988
\(829\) 9630.51 0.403476 0.201738 0.979440i \(-0.435341\pi\)
0.201738 + 0.979440i \(0.435341\pi\)
\(830\) 0 0
\(831\) 26555.4 1.10854
\(832\) 17870.9 0.744665
\(833\) 1449.13 0.0602752
\(834\) 21032.5 0.873255
\(835\) 0 0
\(836\) 10374.2 0.429188
\(837\) −22177.5 −0.915849
\(838\) 9738.55 0.401447
\(839\) −21003.2 −0.864258 −0.432129 0.901812i \(-0.642237\pi\)
−0.432129 + 0.901812i \(0.642237\pi\)
\(840\) 0 0
\(841\) 12887.0 0.528393
\(842\) −19579.7 −0.801378
\(843\) −6975.31 −0.284985
\(844\) 4816.42 0.196431
\(845\) 0 0
\(846\) 564.605 0.0229450
\(847\) −3091.05 −0.125395
\(848\) −962.679 −0.0389841
\(849\) 9358.57 0.378310
\(850\) 0 0
\(851\) 9284.30 0.373986
\(852\) 8778.31 0.352981
\(853\) −35952.4 −1.44313 −0.721563 0.692349i \(-0.756576\pi\)
−0.721563 + 0.692349i \(0.756576\pi\)
\(854\) 5557.27 0.222677
\(855\) 0 0
\(856\) 27225.5 1.08709
\(857\) −11294.5 −0.450191 −0.225095 0.974337i \(-0.572269\pi\)
−0.225095 + 0.974337i \(0.572269\pi\)
\(858\) −20880.1 −0.830808
\(859\) −16077.2 −0.638586 −0.319293 0.947656i \(-0.603445\pi\)
−0.319293 + 0.947656i \(0.603445\pi\)
\(860\) 0 0
\(861\) 9264.13 0.366691
\(862\) 20781.7 0.821147
\(863\) −9154.92 −0.361109 −0.180555 0.983565i \(-0.557789\pi\)
−0.180555 + 0.983565i \(0.557789\pi\)
\(864\) 27309.9 1.07535
\(865\) 0 0
\(866\) −21081.4 −0.827223
\(867\) 20036.4 0.784856
\(868\) 5943.11 0.232399
\(869\) 31700.6 1.23748
\(870\) 0 0
\(871\) −31517.8 −1.22611
\(872\) −7245.11 −0.281365
\(873\) −1146.93 −0.0444648
\(874\) −8784.40 −0.339973
\(875\) 0 0
\(876\) −19657.6 −0.758184
\(877\) 17118.2 0.659110 0.329555 0.944136i \(-0.393101\pi\)
0.329555 + 0.944136i \(0.393101\pi\)
\(878\) −14058.3 −0.540370
\(879\) −31083.9 −1.19276
\(880\) 0 0
\(881\) −38904.8 −1.48778 −0.743891 0.668301i \(-0.767022\pi\)
−0.743891 + 0.668301i \(0.767022\pi\)
\(882\) −181.654 −0.00693494
\(883\) −22859.4 −0.871211 −0.435605 0.900138i \(-0.643466\pi\)
−0.435605 + 0.900138i \(0.643466\pi\)
\(884\) −14975.8 −0.569786
\(885\) 0 0
\(886\) 447.523 0.0169693
\(887\) −8653.76 −0.327582 −0.163791 0.986495i \(-0.552372\pi\)
−0.163791 + 0.986495i \(0.552372\pi\)
\(888\) 10737.0 0.405753
\(889\) 12505.6 0.471794
\(890\) 0 0
\(891\) −19652.3 −0.738918
\(892\) 25300.3 0.949682
\(893\) 9492.41 0.355713
\(894\) −22870.7 −0.855606
\(895\) 0 0
\(896\) −8346.03 −0.311184
\(897\) −40793.7 −1.51847
\(898\) 1046.42 0.0388860
\(899\) −29370.3 −1.08961
\(900\) 0 0
\(901\) −2413.18 −0.0892285
\(902\) −12372.5 −0.456716
\(903\) −13445.0 −0.495484
\(904\) −30513.1 −1.12262
\(905\) 0 0
\(906\) −3352.67 −0.122942
\(907\) −34173.4 −1.25106 −0.625529 0.780201i \(-0.715117\pi\)
−0.625529 + 0.780201i \(0.715117\pi\)
\(908\) −21244.3 −0.776451
\(909\) −2540.13 −0.0926852
\(910\) 0 0
\(911\) −18578.2 −0.675657 −0.337829 0.941208i \(-0.609692\pi\)
−0.337829 + 0.941208i \(0.609692\pi\)
\(912\) 3648.33 0.132465
\(913\) 15025.2 0.544647
\(914\) −9755.56 −0.353047
\(915\) 0 0
\(916\) 17155.1 0.618799
\(917\) −6198.51 −0.223220
\(918\) 6705.56 0.241086
\(919\) 21712.3 0.779349 0.389674 0.920953i \(-0.372588\pi\)
0.389674 + 0.920953i \(0.372588\pi\)
\(920\) 0 0
\(921\) 8263.37 0.295643
\(922\) 6169.96 0.220387
\(923\) 28763.1 1.02573
\(924\) 5780.76 0.205815
\(925\) 0 0
\(926\) 23171.0 0.822298
\(927\) 226.111 0.00801130
\(928\) 36167.4 1.27937
\(929\) −21430.5 −0.756848 −0.378424 0.925632i \(-0.623534\pi\)
−0.378424 + 0.925632i \(0.623534\pi\)
\(930\) 0 0
\(931\) −3054.06 −0.107511
\(932\) −8526.06 −0.299657
\(933\) −12372.2 −0.434136
\(934\) −11464.3 −0.401630
\(935\) 0 0
\(936\) 4568.18 0.159525
\(937\) −20091.8 −0.700501 −0.350250 0.936656i \(-0.613904\pi\)
−0.350250 + 0.936656i \(0.613904\pi\)
\(938\) −3781.84 −0.131643
\(939\) 14187.5 0.493069
\(940\) 0 0
\(941\) −1000.61 −0.0346640 −0.0173320 0.999850i \(-0.505517\pi\)
−0.0173320 + 0.999850i \(0.505517\pi\)
\(942\) −3830.53 −0.132490
\(943\) −24172.3 −0.834738
\(944\) −2782.91 −0.0959492
\(945\) 0 0
\(946\) 17956.1 0.617129
\(947\) 19867.8 0.681751 0.340875 0.940108i \(-0.389277\pi\)
0.340875 + 0.940108i \(0.389277\pi\)
\(948\) 29433.8 1.00840
\(949\) −64410.4 −2.20322
\(950\) 0 0
\(951\) −40458.9 −1.37957
\(952\) −4372.72 −0.148866
\(953\) 1557.33 0.0529347 0.0264673 0.999650i \(-0.491574\pi\)
0.0264673 + 0.999650i \(0.491574\pi\)
\(954\) 302.503 0.0102661
\(955\) 0 0
\(956\) 13149.7 0.444865
\(957\) −28568.0 −0.964967
\(958\) 18561.1 0.625973
\(959\) 21134.7 0.711651
\(960\) 0 0
\(961\) −6649.63 −0.223209
\(962\) 14457.5 0.484540
\(963\) 3072.38 0.102810
\(964\) 35145.7 1.17424
\(965\) 0 0
\(966\) −4894.86 −0.163033
\(967\) 45866.9 1.52532 0.762658 0.646802i \(-0.223894\pi\)
0.762658 + 0.646802i \(0.223894\pi\)
\(968\) 9327.18 0.309697
\(969\) 9145.42 0.303192
\(970\) 0 0
\(971\) −26313.5 −0.869661 −0.434830 0.900512i \(-0.643192\pi\)
−0.434830 + 0.900512i \(0.643192\pi\)
\(972\) 3721.59 0.122809
\(973\) −19079.6 −0.628637
\(974\) 6940.46 0.228323
\(975\) 0 0
\(976\) 6022.23 0.197507
\(977\) 46807.1 1.53274 0.766372 0.642397i \(-0.222060\pi\)
0.766372 + 0.642397i \(0.222060\pi\)
\(978\) 22892.8 0.748496
\(979\) 14385.0 0.469608
\(980\) 0 0
\(981\) −817.605 −0.0266097
\(982\) 11785.4 0.382981
\(983\) 43413.8 1.40863 0.704316 0.709887i \(-0.251254\pi\)
0.704316 + 0.709887i \(0.251254\pi\)
\(984\) −27954.4 −0.905643
\(985\) 0 0
\(986\) 8880.39 0.286825
\(987\) 5289.38 0.170580
\(988\) 31561.8 1.01631
\(989\) 35081.2 1.12792
\(990\) 0 0
\(991\) 52226.1 1.67408 0.837042 0.547139i \(-0.184283\pi\)
0.837042 + 0.547139i \(0.184283\pi\)
\(992\) −28496.9 −0.912073
\(993\) −814.303 −0.0260233
\(994\) 3451.30 0.110129
\(995\) 0 0
\(996\) 13950.8 0.443824
\(997\) −23852.0 −0.757673 −0.378836 0.925464i \(-0.623676\pi\)
−0.378836 + 0.925464i \(0.623676\pi\)
\(998\) −17765.2 −0.563474
\(999\) 14936.3 0.473037
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.4.a.j.1.3 5
3.2 odd 2 1575.4.a.bn.1.3 5
5.2 odd 4 35.4.b.a.29.6 yes 10
5.3 odd 4 35.4.b.a.29.5 10
5.4 even 2 175.4.a.i.1.3 5
7.6 odd 2 1225.4.a.bh.1.3 5
15.2 even 4 315.4.d.c.64.5 10
15.8 even 4 315.4.d.c.64.6 10
15.14 odd 2 1575.4.a.bq.1.3 5
20.3 even 4 560.4.g.f.449.8 10
20.7 even 4 560.4.g.f.449.3 10
35.2 odd 12 245.4.j.e.214.6 20
35.3 even 12 245.4.j.f.79.6 20
35.12 even 12 245.4.j.f.214.6 20
35.13 even 4 245.4.b.d.99.5 10
35.17 even 12 245.4.j.f.79.5 20
35.18 odd 12 245.4.j.e.79.6 20
35.23 odd 12 245.4.j.e.214.5 20
35.27 even 4 245.4.b.d.99.6 10
35.32 odd 12 245.4.j.e.79.5 20
35.33 even 12 245.4.j.f.214.5 20
35.34 odd 2 1225.4.a.be.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.b.a.29.5 10 5.3 odd 4
35.4.b.a.29.6 yes 10 5.2 odd 4
175.4.a.i.1.3 5 5.4 even 2
175.4.a.j.1.3 5 1.1 even 1 trivial
245.4.b.d.99.5 10 35.13 even 4
245.4.b.d.99.6 10 35.27 even 4
245.4.j.e.79.5 20 35.32 odd 12
245.4.j.e.79.6 20 35.18 odd 12
245.4.j.e.214.5 20 35.23 odd 12
245.4.j.e.214.6 20 35.2 odd 12
245.4.j.f.79.5 20 35.17 even 12
245.4.j.f.79.6 20 35.3 even 12
245.4.j.f.214.5 20 35.33 even 12
245.4.j.f.214.6 20 35.12 even 12
315.4.d.c.64.5 10 15.2 even 4
315.4.d.c.64.6 10 15.8 even 4
560.4.g.f.449.3 10 20.7 even 4
560.4.g.f.449.8 10 20.3 even 4
1225.4.a.be.1.3 5 35.34 odd 2
1225.4.a.bh.1.3 5 7.6 odd 2
1575.4.a.bn.1.3 5 3.2 odd 2
1575.4.a.bq.1.3 5 15.14 odd 2