Properties

Label 175.8.b
Level 175175
Weight 88
Character orbit 175.b
Rep. character χ175(99,)\chi_{175}(99,\cdot)
Character field Q\Q
Dimension 6262
Newform subspaces 88
Sturm bound 160160
Trace bound 44

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 175=527 175 = 5^{2} \cdot 7
Weight: k k == 8 8
Character orbit: [χ][\chi] == 175.b (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 5 5
Character field: Q\Q
Newform subspaces: 8 8
Sturm bound: 160160
Trace bound: 44
Distinguishing TpT_p: 22

Dimensions

The following table gives the dimensions of various subspaces of M8(175,[χ])M_{8}(175, [\chi]).

Total New Old
Modular forms 146 62 84
Cusp forms 134 62 72
Eisenstein series 12 0 12

Trace form

62q3736q4216q639114q916556q11+10976q14+241032q16+92840q19+19208q21595700q24+214284q26371140q29+1079644q31+224888q34+1507812q36+31535248q99+O(q100) 62 q - 3736 q^{4} - 216 q^{6} - 39114 q^{9} - 16556 q^{11} + 10976 q^{14} + 241032 q^{16} + 92840 q^{19} + 19208 q^{21} - 595700 q^{24} + 214284 q^{26} - 371140 q^{29} + 1079644 q^{31} + 224888 q^{34} + 1507812 q^{36}+ \cdots - 31535248 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S8new(175,[χ])S_{8}^{\mathrm{new}}(175, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
175.8.b.a 175.b 5.b 22 54.66754.667 Q(1)\Q(\sqrt{-1}) None 7.8.a.a 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+6iq242iq3+92q4+252q6+q+6 i q^{2}-42 i q^{3}+92 q^{4}+252 q^{6}+\cdots
175.8.b.b 175.b 5.b 44 54.66754.667 Q(i,865)\Q(i, \sqrt{865}) None 7.8.a.b 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(β1β2)q2+(2β146β2)q3+(92+)q4+q+(\beta _{1}-\beta _{2})q^{2}+(2\beta _{1}-46\beta _{2})q^{3}+(-92+\cdots)q^{4}+\cdots
175.8.b.c 175.b 5.b 44 54.66754.667 Q(i,11)\Q(i, \sqrt{11}) None 35.8.a.a 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(8β1+β3)q2+(15β1+6β3)q3+q+(8\beta _{1}+\beta _{3})q^{2}+(15\beta _{1}+6\beta _{3})q^{3}+\cdots
175.8.b.d 175.b 5.b 66 54.66754.667 Q[x]/(x6+)\mathbb{Q}[x]/(x^{6} + \cdots) None 35.8.a.b 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(β1+8β2)q2+(2β117β2β5)q3+q+(\beta _{1}+8\beta _{2})q^{2}+(-2\beta _{1}-17\beta _{2}-\beta _{5})q^{3}+\cdots
175.8.b.e 175.b 5.b 88 54.66754.667 Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots) None 35.8.a.c 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(β2β4)q2+(9β2+β4+2β5+)q3+q+(-\beta _{2}-\beta _{4})q^{2}+(9\beta _{2}+\beta _{4}+2\beta _{5}+\cdots)q^{3}+\cdots
175.8.b.f 175.b 5.b 1010 54.66754.667 Q[x]/(x10+)\mathbb{Q}[x]/(x^{10} + \cdots) None 35.8.a.d 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(β12β5)q2+(13β5β7)q3+(111+)q4+q+(\beta _{1}-2\beta _{5})q^{2}+(13\beta _{5}-\beta _{7})q^{3}+(-111+\cdots)q^{4}+\cdots
175.8.b.g 175.b 5.b 1212 54.66754.667 Q[x]/(x12+)\mathbb{Q}[x]/(x^{12} + \cdots) None 175.8.a.g 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(β1+β7)q2+(β1+5β7+β8)q3+q+(\beta _{1}+\beta _{7})q^{2}+(\beta _{1}+5\beta _{7}+\beta _{8})q^{3}+\cdots
175.8.b.h 175.b 5.b 1616 54.66754.667 Q[x]/(x16+)\mathbb{Q}[x]/(x^{16} + \cdots) None 175.8.a.i 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(β1+2β9)q2+(7β9β10)q3+q+(\beta _{1}+2\beta _{9})q^{2}+(-7\beta _{9}-\beta _{10})q^{3}+\cdots

Decomposition of S8old(175,[χ])S_{8}^{\mathrm{old}}(175, [\chi]) into lower level spaces

S8old(175,[χ]) S_{8}^{\mathrm{old}}(175, [\chi]) \simeq S8new(5,[χ])S_{8}^{\mathrm{new}}(5, [\chi])4^{\oplus 4}\oplusS8new(25,[χ])S_{8}^{\mathrm{new}}(25, [\chi])2^{\oplus 2}\oplusS8new(35,[χ])S_{8}^{\mathrm{new}}(35, [\chi])2^{\oplus 2}