Properties

Label 1759.2.a.b.1.74
Level $1759$
Weight $2$
Character 1759.1
Self dual yes
Analytic conductor $14.046$
Analytic rank $0$
Dimension $86$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1759,2,Mod(1,1759)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1759, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1759.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1759 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1759.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.0456857155\)
Analytic rank: \(0\)
Dimension: \(86\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.74
Character \(\chi\) \(=\) 1759.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.24492 q^{2} +3.21397 q^{3} +3.03965 q^{4} -2.36190 q^{5} +7.21508 q^{6} -1.03422 q^{7} +2.33393 q^{8} +7.32957 q^{9} -5.30226 q^{10} +6.14143 q^{11} +9.76933 q^{12} -0.596023 q^{13} -2.32173 q^{14} -7.59105 q^{15} -0.839825 q^{16} +0.0577882 q^{17} +16.4543 q^{18} +0.132713 q^{19} -7.17934 q^{20} -3.32393 q^{21} +13.7870 q^{22} -3.29501 q^{23} +7.50117 q^{24} +0.578557 q^{25} -1.33802 q^{26} +13.9151 q^{27} -3.14366 q^{28} -5.83126 q^{29} -17.0413 q^{30} +9.74636 q^{31} -6.55320 q^{32} +19.7384 q^{33} +0.129730 q^{34} +2.44271 q^{35} +22.2793 q^{36} +1.48049 q^{37} +0.297929 q^{38} -1.91560 q^{39} -5.51250 q^{40} +6.35485 q^{41} -7.46196 q^{42} -4.15748 q^{43} +18.6678 q^{44} -17.3117 q^{45} -7.39702 q^{46} -7.70719 q^{47} -2.69917 q^{48} -5.93040 q^{49} +1.29881 q^{50} +0.185729 q^{51} -1.81170 q^{52} -6.27948 q^{53} +31.2382 q^{54} -14.5054 q^{55} -2.41379 q^{56} +0.426533 q^{57} -13.0907 q^{58} +2.43438 q^{59} -23.0742 q^{60} -3.51326 q^{61} +21.8798 q^{62} -7.58036 q^{63} -13.0317 q^{64} +1.40774 q^{65} +44.3110 q^{66} -9.47401 q^{67} +0.175656 q^{68} -10.5900 q^{69} +5.48368 q^{70} +10.3934 q^{71} +17.1067 q^{72} -12.6814 q^{73} +3.32357 q^{74} +1.85946 q^{75} +0.403400 q^{76} -6.35157 q^{77} -4.30035 q^{78} +15.2086 q^{79} +1.98358 q^{80} +22.7339 q^{81} +14.2661 q^{82} +2.29076 q^{83} -10.1036 q^{84} -0.136490 q^{85} -9.33320 q^{86} -18.7415 q^{87} +14.3337 q^{88} -9.43605 q^{89} -38.8633 q^{90} +0.616416 q^{91} -10.0157 q^{92} +31.3244 q^{93} -17.3020 q^{94} -0.313453 q^{95} -21.0617 q^{96} +11.2272 q^{97} -13.3132 q^{98} +45.0141 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 86 q + 10 q^{2} + 11 q^{3} + 94 q^{4} + 30 q^{5} + 13 q^{6} + 30 q^{8} + 135 q^{9} + 9 q^{10} + 22 q^{11} + 26 q^{12} + 16 q^{13} + 52 q^{14} + 9 q^{15} + 102 q^{16} + 72 q^{17} + 21 q^{18} + 10 q^{19}+ \cdots - 17 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.24492 1.58740 0.793698 0.608312i \(-0.208153\pi\)
0.793698 + 0.608312i \(0.208153\pi\)
\(3\) 3.21397 1.85558 0.927792 0.373098i \(-0.121705\pi\)
0.927792 + 0.373098i \(0.121705\pi\)
\(4\) 3.03965 1.51983
\(5\) −2.36190 −1.05627 −0.528136 0.849160i \(-0.677109\pi\)
−0.528136 + 0.849160i \(0.677109\pi\)
\(6\) 7.21508 2.94555
\(7\) −1.03422 −0.390897 −0.195448 0.980714i \(-0.562616\pi\)
−0.195448 + 0.980714i \(0.562616\pi\)
\(8\) 2.33393 0.825169
\(9\) 7.32957 2.44319
\(10\) −5.30226 −1.67672
\(11\) 6.14143 1.85171 0.925856 0.377876i \(-0.123346\pi\)
0.925856 + 0.377876i \(0.123346\pi\)
\(12\) 9.76933 2.82016
\(13\) −0.596023 −0.165307 −0.0826535 0.996578i \(-0.526339\pi\)
−0.0826535 + 0.996578i \(0.526339\pi\)
\(14\) −2.32173 −0.620508
\(15\) −7.59105 −1.96000
\(16\) −0.839825 −0.209956
\(17\) 0.0577882 0.0140157 0.00700785 0.999975i \(-0.497769\pi\)
0.00700785 + 0.999975i \(0.497769\pi\)
\(18\) 16.4543 3.87831
\(19\) 0.132713 0.0304463 0.0152232 0.999884i \(-0.495154\pi\)
0.0152232 + 0.999884i \(0.495154\pi\)
\(20\) −7.17934 −1.60535
\(21\) −3.32393 −0.725342
\(22\) 13.7870 2.93940
\(23\) −3.29501 −0.687057 −0.343528 0.939142i \(-0.611622\pi\)
−0.343528 + 0.939142i \(0.611622\pi\)
\(24\) 7.50117 1.53117
\(25\) 0.578557 0.115711
\(26\) −1.33802 −0.262408
\(27\) 13.9151 2.67796
\(28\) −3.14366 −0.594095
\(29\) −5.83126 −1.08284 −0.541418 0.840753i \(-0.682113\pi\)
−0.541418 + 0.840753i \(0.682113\pi\)
\(30\) −17.0413 −3.11130
\(31\) 9.74636 1.75050 0.875249 0.483673i \(-0.160698\pi\)
0.875249 + 0.483673i \(0.160698\pi\)
\(32\) −6.55320 −1.15845
\(33\) 19.7384 3.43601
\(34\) 0.129730 0.0222485
\(35\) 2.44271 0.412894
\(36\) 22.2793 3.71322
\(37\) 1.48049 0.243391 0.121695 0.992567i \(-0.461167\pi\)
0.121695 + 0.992567i \(0.461167\pi\)
\(38\) 0.297929 0.0483304
\(39\) −1.91560 −0.306741
\(40\) −5.51250 −0.871603
\(41\) 6.35485 0.992461 0.496231 0.868191i \(-0.334717\pi\)
0.496231 + 0.868191i \(0.334717\pi\)
\(42\) −7.46196 −1.15140
\(43\) −4.15748 −0.634010 −0.317005 0.948424i \(-0.602677\pi\)
−0.317005 + 0.948424i \(0.602677\pi\)
\(44\) 18.6678 2.81428
\(45\) −17.3117 −2.58067
\(46\) −7.39702 −1.09063
\(47\) −7.70719 −1.12421 −0.562105 0.827066i \(-0.690008\pi\)
−0.562105 + 0.827066i \(0.690008\pi\)
\(48\) −2.69917 −0.389591
\(49\) −5.93040 −0.847200
\(50\) 1.29881 0.183680
\(51\) 0.185729 0.0260073
\(52\) −1.81170 −0.251238
\(53\) −6.27948 −0.862553 −0.431276 0.902220i \(-0.641937\pi\)
−0.431276 + 0.902220i \(0.641937\pi\)
\(54\) 31.2382 4.25098
\(55\) −14.5054 −1.95591
\(56\) −2.41379 −0.322556
\(57\) 0.426533 0.0564957
\(58\) −13.0907 −1.71889
\(59\) 2.43438 0.316929 0.158465 0.987365i \(-0.449346\pi\)
0.158465 + 0.987365i \(0.449346\pi\)
\(60\) −23.0742 −2.97886
\(61\) −3.51326 −0.449827 −0.224914 0.974379i \(-0.572210\pi\)
−0.224914 + 0.974379i \(0.572210\pi\)
\(62\) 21.8798 2.77873
\(63\) −7.58036 −0.955036
\(64\) −13.0317 −1.62897
\(65\) 1.40774 0.174609
\(66\) 44.3110 5.45430
\(67\) −9.47401 −1.15743 −0.578717 0.815528i \(-0.696447\pi\)
−0.578717 + 0.815528i \(0.696447\pi\)
\(68\) 0.175656 0.0213014
\(69\) −10.5900 −1.27489
\(70\) 5.48368 0.655426
\(71\) 10.3934 1.23347 0.616735 0.787171i \(-0.288455\pi\)
0.616735 + 0.787171i \(0.288455\pi\)
\(72\) 17.1067 2.01604
\(73\) −12.6814 −1.48425 −0.742123 0.670264i \(-0.766181\pi\)
−0.742123 + 0.670264i \(0.766181\pi\)
\(74\) 3.32357 0.386357
\(75\) 1.85946 0.214712
\(76\) 0.403400 0.0462731
\(77\) −6.35157 −0.723829
\(78\) −4.30035 −0.486919
\(79\) 15.2086 1.71110 0.855551 0.517719i \(-0.173219\pi\)
0.855551 + 0.517719i \(0.173219\pi\)
\(80\) 1.98358 0.221771
\(81\) 22.7339 2.52599
\(82\) 14.2661 1.57543
\(83\) 2.29076 0.251444 0.125722 0.992066i \(-0.459875\pi\)
0.125722 + 0.992066i \(0.459875\pi\)
\(84\) −10.1036 −1.10239
\(85\) −0.136490 −0.0148044
\(86\) −9.33320 −1.00642
\(87\) −18.7415 −2.00929
\(88\) 14.3337 1.52797
\(89\) −9.43605 −1.00022 −0.500110 0.865962i \(-0.666707\pi\)
−0.500110 + 0.865962i \(0.666707\pi\)
\(90\) −38.8633 −4.09655
\(91\) 0.616416 0.0646180
\(92\) −10.0157 −1.04421
\(93\) 31.3244 3.24819
\(94\) −17.3020 −1.78457
\(95\) −0.313453 −0.0321596
\(96\) −21.0617 −2.14960
\(97\) 11.2272 1.13995 0.569974 0.821663i \(-0.306953\pi\)
0.569974 + 0.821663i \(0.306953\pi\)
\(98\) −13.3132 −1.34484
\(99\) 45.0141 4.52409
\(100\) 1.75861 0.175861
\(101\) −6.32392 −0.629253 −0.314627 0.949215i \(-0.601879\pi\)
−0.314627 + 0.949215i \(0.601879\pi\)
\(102\) 0.416947 0.0412839
\(103\) −16.3231 −1.60836 −0.804182 0.594384i \(-0.797396\pi\)
−0.804182 + 0.594384i \(0.797396\pi\)
\(104\) −1.39107 −0.136406
\(105\) 7.85079 0.766159
\(106\) −14.0969 −1.36921
\(107\) 0.514140 0.0497038 0.0248519 0.999691i \(-0.492089\pi\)
0.0248519 + 0.999691i \(0.492089\pi\)
\(108\) 42.2970 4.07003
\(109\) −15.9742 −1.53005 −0.765027 0.643999i \(-0.777274\pi\)
−0.765027 + 0.643999i \(0.777274\pi\)
\(110\) −32.5635 −3.10481
\(111\) 4.75824 0.451632
\(112\) 0.868561 0.0820713
\(113\) 4.54716 0.427760 0.213880 0.976860i \(-0.431390\pi\)
0.213880 + 0.976860i \(0.431390\pi\)
\(114\) 0.957532 0.0896811
\(115\) 7.78247 0.725719
\(116\) −17.7250 −1.64572
\(117\) −4.36859 −0.403876
\(118\) 5.46498 0.503092
\(119\) −0.0597655 −0.00547870
\(120\) −17.7170 −1.61733
\(121\) 26.7172 2.42884
\(122\) −7.88698 −0.714054
\(123\) 20.4243 1.84159
\(124\) 29.6255 2.66045
\(125\) 10.4430 0.934050
\(126\) −17.0173 −1.51602
\(127\) 2.24350 0.199078 0.0995390 0.995034i \(-0.468263\pi\)
0.0995390 + 0.995034i \(0.468263\pi\)
\(128\) −16.1488 −1.42736
\(129\) −13.3620 −1.17646
\(130\) 3.16027 0.277174
\(131\) −10.2853 −0.898630 −0.449315 0.893373i \(-0.648332\pi\)
−0.449315 + 0.893373i \(0.648332\pi\)
\(132\) 59.9977 5.22213
\(133\) −0.137253 −0.0119014
\(134\) −21.2684 −1.83731
\(135\) −32.8660 −2.82866
\(136\) 0.134874 0.0115653
\(137\) 11.0363 0.942894 0.471447 0.881894i \(-0.343732\pi\)
0.471447 + 0.881894i \(0.343732\pi\)
\(138\) −23.7738 −2.02376
\(139\) 14.5931 1.23777 0.618887 0.785480i \(-0.287584\pi\)
0.618887 + 0.785480i \(0.287584\pi\)
\(140\) 7.42499 0.627526
\(141\) −24.7706 −2.08606
\(142\) 23.3323 1.95800
\(143\) −3.66043 −0.306101
\(144\) −6.15556 −0.512963
\(145\) 13.7728 1.14377
\(146\) −28.4687 −2.35608
\(147\) −19.0601 −1.57205
\(148\) 4.50017 0.369911
\(149\) −4.46627 −0.365891 −0.182945 0.983123i \(-0.558563\pi\)
−0.182945 + 0.983123i \(0.558563\pi\)
\(150\) 4.17434 0.340833
\(151\) 3.03934 0.247338 0.123669 0.992324i \(-0.460534\pi\)
0.123669 + 0.992324i \(0.460534\pi\)
\(152\) 0.309742 0.0251234
\(153\) 0.423563 0.0342430
\(154\) −14.2587 −1.14900
\(155\) −23.0199 −1.84900
\(156\) −5.82274 −0.466193
\(157\) −1.69889 −0.135587 −0.0677933 0.997699i \(-0.521596\pi\)
−0.0677933 + 0.997699i \(0.521596\pi\)
\(158\) 34.1420 2.71619
\(159\) −20.1820 −1.60054
\(160\) 15.4780 1.22364
\(161\) 3.40775 0.268568
\(162\) 51.0357 4.00974
\(163\) 6.64571 0.520532 0.260266 0.965537i \(-0.416190\pi\)
0.260266 + 0.965537i \(0.416190\pi\)
\(164\) 19.3165 1.50837
\(165\) −46.6200 −3.62936
\(166\) 5.14257 0.399141
\(167\) −3.78297 −0.292735 −0.146368 0.989230i \(-0.546758\pi\)
−0.146368 + 0.989230i \(0.546758\pi\)
\(168\) −7.75783 −0.598529
\(169\) −12.6448 −0.972674
\(170\) −0.306408 −0.0235005
\(171\) 0.972726 0.0743862
\(172\) −12.6373 −0.963585
\(173\) −4.31613 −0.328149 −0.164075 0.986448i \(-0.552464\pi\)
−0.164075 + 0.986448i \(0.552464\pi\)
\(174\) −42.0730 −3.18955
\(175\) −0.598353 −0.0452312
\(176\) −5.15773 −0.388779
\(177\) 7.82401 0.588089
\(178\) −21.1831 −1.58774
\(179\) 2.96561 0.221660 0.110830 0.993839i \(-0.464649\pi\)
0.110830 + 0.993839i \(0.464649\pi\)
\(180\) −52.6215 −3.92217
\(181\) −1.08727 −0.0808162 −0.0404081 0.999183i \(-0.512866\pi\)
−0.0404081 + 0.999183i \(0.512866\pi\)
\(182\) 1.38380 0.102574
\(183\) −11.2915 −0.834692
\(184\) −7.69031 −0.566937
\(185\) −3.49676 −0.257087
\(186\) 70.3208 5.15617
\(187\) 0.354903 0.0259531
\(188\) −23.4272 −1.70860
\(189\) −14.3912 −1.04681
\(190\) −0.703676 −0.0510501
\(191\) −3.59544 −0.260157 −0.130079 0.991504i \(-0.541523\pi\)
−0.130079 + 0.991504i \(0.541523\pi\)
\(192\) −41.8835 −3.02268
\(193\) −11.3825 −0.819327 −0.409664 0.912237i \(-0.634354\pi\)
−0.409664 + 0.912237i \(0.634354\pi\)
\(194\) 25.2041 1.80955
\(195\) 4.52444 0.324002
\(196\) −18.0263 −1.28760
\(197\) −6.96506 −0.496240 −0.248120 0.968729i \(-0.579813\pi\)
−0.248120 + 0.968729i \(0.579813\pi\)
\(198\) 101.053 7.18151
\(199\) 24.0059 1.70173 0.850866 0.525383i \(-0.176078\pi\)
0.850866 + 0.525383i \(0.176078\pi\)
\(200\) 1.35031 0.0954814
\(201\) −30.4491 −2.14772
\(202\) −14.1967 −0.998874
\(203\) 6.03078 0.423278
\(204\) 0.564553 0.0395266
\(205\) −15.0095 −1.04831
\(206\) −36.6440 −2.55311
\(207\) −24.1510 −1.67861
\(208\) 0.500555 0.0347072
\(209\) 0.815045 0.0563779
\(210\) 17.6244 1.21620
\(211\) −9.65234 −0.664495 −0.332247 0.943192i \(-0.607807\pi\)
−0.332247 + 0.943192i \(0.607807\pi\)
\(212\) −19.0874 −1.31093
\(213\) 33.4040 2.28881
\(214\) 1.15420 0.0788997
\(215\) 9.81954 0.669687
\(216\) 32.4768 2.20977
\(217\) −10.0798 −0.684264
\(218\) −35.8608 −2.42880
\(219\) −40.7576 −2.75414
\(220\) −44.0915 −2.97265
\(221\) −0.0344431 −0.00231689
\(222\) 10.6818 0.716919
\(223\) 21.6959 1.45286 0.726432 0.687238i \(-0.241177\pi\)
0.726432 + 0.687238i \(0.241177\pi\)
\(224\) 6.77742 0.452835
\(225\) 4.24057 0.282705
\(226\) 10.2080 0.679025
\(227\) 8.77090 0.582145 0.291073 0.956701i \(-0.405988\pi\)
0.291073 + 0.956701i \(0.405988\pi\)
\(228\) 1.29651 0.0858636
\(229\) −18.4561 −1.21961 −0.609805 0.792551i \(-0.708752\pi\)
−0.609805 + 0.792551i \(0.708752\pi\)
\(230\) 17.4710 1.15200
\(231\) −20.4137 −1.34312
\(232\) −13.6097 −0.893523
\(233\) 18.5105 1.21267 0.606333 0.795211i \(-0.292640\pi\)
0.606333 + 0.795211i \(0.292640\pi\)
\(234\) −9.80712 −0.641112
\(235\) 18.2036 1.18747
\(236\) 7.39966 0.481677
\(237\) 48.8799 3.17509
\(238\) −0.134169 −0.00869686
\(239\) 28.6743 1.85479 0.927393 0.374088i \(-0.122044\pi\)
0.927393 + 0.374088i \(0.122044\pi\)
\(240\) 6.37516 0.411515
\(241\) 16.1850 1.04257 0.521283 0.853384i \(-0.325453\pi\)
0.521283 + 0.853384i \(0.325453\pi\)
\(242\) 59.9779 3.85553
\(243\) 31.3207 2.00922
\(244\) −10.6791 −0.683659
\(245\) 14.0070 0.894873
\(246\) 45.8508 2.92334
\(247\) −0.0790997 −0.00503299
\(248\) 22.7473 1.44446
\(249\) 7.36243 0.466575
\(250\) 23.4436 1.48271
\(251\) −0.465551 −0.0293853 −0.0146927 0.999892i \(-0.504677\pi\)
−0.0146927 + 0.999892i \(0.504677\pi\)
\(252\) −23.0417 −1.45149
\(253\) −20.2361 −1.27223
\(254\) 5.03646 0.316016
\(255\) −0.438674 −0.0274708
\(256\) −10.1891 −0.636822
\(257\) 3.35139 0.209054 0.104527 0.994522i \(-0.466667\pi\)
0.104527 + 0.994522i \(0.466667\pi\)
\(258\) −29.9966 −1.86751
\(259\) −1.53114 −0.0951407
\(260\) 4.27905 0.265375
\(261\) −42.7406 −2.64558
\(262\) −23.0896 −1.42648
\(263\) −27.4877 −1.69496 −0.847482 0.530823i \(-0.821883\pi\)
−0.847482 + 0.530823i \(0.821883\pi\)
\(264\) 46.0679 2.83528
\(265\) 14.8315 0.911091
\(266\) −0.308123 −0.0188922
\(267\) −30.3271 −1.85599
\(268\) −28.7977 −1.75910
\(269\) 22.0040 1.34161 0.670804 0.741634i \(-0.265949\pi\)
0.670804 + 0.741634i \(0.265949\pi\)
\(270\) −73.7815 −4.49020
\(271\) 10.5123 0.638578 0.319289 0.947657i \(-0.396556\pi\)
0.319289 + 0.947657i \(0.396556\pi\)
\(272\) −0.0485320 −0.00294269
\(273\) 1.98114 0.119904
\(274\) 24.7756 1.49675
\(275\) 3.55317 0.214264
\(276\) −32.1900 −1.93761
\(277\) 27.7017 1.66444 0.832218 0.554449i \(-0.187071\pi\)
0.832218 + 0.554449i \(0.187071\pi\)
\(278\) 32.7604 1.96484
\(279\) 71.4366 4.27680
\(280\) 5.70112 0.340707
\(281\) −18.5417 −1.10610 −0.553052 0.833147i \(-0.686537\pi\)
−0.553052 + 0.833147i \(0.686537\pi\)
\(282\) −55.6080 −3.31141
\(283\) −19.6738 −1.16949 −0.584744 0.811218i \(-0.698805\pi\)
−0.584744 + 0.811218i \(0.698805\pi\)
\(284\) 31.5923 1.87466
\(285\) −1.00743 −0.0596749
\(286\) −8.21737 −0.485903
\(287\) −6.57229 −0.387950
\(288\) −48.0321 −2.83032
\(289\) −16.9967 −0.999804
\(290\) 30.9188 1.81562
\(291\) 36.0838 2.11527
\(292\) −38.5470 −2.25579
\(293\) −33.5644 −1.96085 −0.980426 0.196889i \(-0.936916\pi\)
−0.980426 + 0.196889i \(0.936916\pi\)
\(294\) −42.7883 −2.49546
\(295\) −5.74975 −0.334764
\(296\) 3.45535 0.200838
\(297\) 85.4586 4.95881
\(298\) −10.0264 −0.580813
\(299\) 1.96390 0.113575
\(300\) 5.65211 0.326325
\(301\) 4.29974 0.247833
\(302\) 6.82306 0.392623
\(303\) −20.3249 −1.16763
\(304\) −0.111455 −0.00639240
\(305\) 8.29796 0.475140
\(306\) 0.950864 0.0543573
\(307\) 29.1840 1.66562 0.832811 0.553558i \(-0.186730\pi\)
0.832811 + 0.553558i \(0.186730\pi\)
\(308\) −19.3066 −1.10009
\(309\) −52.4619 −2.98445
\(310\) −51.6777 −2.93510
\(311\) 31.4112 1.78116 0.890582 0.454823i \(-0.150298\pi\)
0.890582 + 0.454823i \(0.150298\pi\)
\(312\) −4.47087 −0.253113
\(313\) −13.6420 −0.771089 −0.385544 0.922689i \(-0.625986\pi\)
−0.385544 + 0.922689i \(0.625986\pi\)
\(314\) −3.81388 −0.215229
\(315\) 17.9040 1.00878
\(316\) 46.2288 2.60057
\(317\) −4.59025 −0.257814 −0.128907 0.991657i \(-0.541147\pi\)
−0.128907 + 0.991657i \(0.541147\pi\)
\(318\) −45.3070 −2.54069
\(319\) −35.8123 −2.00510
\(320\) 30.7796 1.72063
\(321\) 1.65243 0.0922296
\(322\) 7.65011 0.426324
\(323\) 0.00766922 0.000426727 0
\(324\) 69.1031 3.83906
\(325\) −0.344833 −0.0191279
\(326\) 14.9191 0.826291
\(327\) −51.3406 −2.83914
\(328\) 14.8318 0.818948
\(329\) 7.97090 0.439450
\(330\) −104.658 −5.76123
\(331\) 13.6657 0.751134 0.375567 0.926795i \(-0.377448\pi\)
0.375567 + 0.926795i \(0.377448\pi\)
\(332\) 6.96312 0.382151
\(333\) 10.8513 0.594650
\(334\) −8.49246 −0.464687
\(335\) 22.3766 1.22257
\(336\) 2.79152 0.152290
\(337\) 0.832706 0.0453604 0.0226802 0.999743i \(-0.492780\pi\)
0.0226802 + 0.999743i \(0.492780\pi\)
\(338\) −28.3864 −1.54402
\(339\) 14.6144 0.793745
\(340\) −0.414882 −0.0225001
\(341\) 59.8566 3.24142
\(342\) 2.18369 0.118080
\(343\) 13.3728 0.722065
\(344\) −9.70327 −0.523165
\(345\) 25.0126 1.34663
\(346\) −9.68935 −0.520903
\(347\) 34.3654 1.84483 0.922416 0.386197i \(-0.126212\pi\)
0.922416 + 0.386197i \(0.126212\pi\)
\(348\) −56.9675 −3.05378
\(349\) 12.3871 0.663068 0.331534 0.943443i \(-0.392434\pi\)
0.331534 + 0.943443i \(0.392434\pi\)
\(350\) −1.34325 −0.0717998
\(351\) −8.29371 −0.442686
\(352\) −40.2460 −2.14512
\(353\) 29.2487 1.55675 0.778377 0.627798i \(-0.216043\pi\)
0.778377 + 0.627798i \(0.216043\pi\)
\(354\) 17.5643 0.933529
\(355\) −24.5481 −1.30288
\(356\) −28.6823 −1.52016
\(357\) −0.192084 −0.0101662
\(358\) 6.65755 0.351862
\(359\) −18.8749 −0.996178 −0.498089 0.867126i \(-0.665965\pi\)
−0.498089 + 0.867126i \(0.665965\pi\)
\(360\) −40.4043 −2.12949
\(361\) −18.9824 −0.999073
\(362\) −2.44083 −0.128287
\(363\) 85.8682 4.50691
\(364\) 1.87369 0.0982081
\(365\) 29.9521 1.56777
\(366\) −25.3485 −1.32499
\(367\) 14.1738 0.739868 0.369934 0.929058i \(-0.379380\pi\)
0.369934 + 0.929058i \(0.379380\pi\)
\(368\) 2.76723 0.144252
\(369\) 46.5783 2.42477
\(370\) −7.84994 −0.408099
\(371\) 6.49434 0.337169
\(372\) 95.2154 4.93669
\(373\) −24.4583 −1.26640 −0.633202 0.773987i \(-0.718260\pi\)
−0.633202 + 0.773987i \(0.718260\pi\)
\(374\) 0.796727 0.0411978
\(375\) 33.5634 1.73321
\(376\) −17.9880 −0.927662
\(377\) 3.47556 0.179000
\(378\) −32.3071 −1.66170
\(379\) 25.4898 1.30932 0.654660 0.755923i \(-0.272812\pi\)
0.654660 + 0.755923i \(0.272812\pi\)
\(380\) −0.952788 −0.0488770
\(381\) 7.21052 0.369406
\(382\) −8.07147 −0.412972
\(383\) −5.20428 −0.265926 −0.132963 0.991121i \(-0.542449\pi\)
−0.132963 + 0.991121i \(0.542449\pi\)
\(384\) −51.9015 −2.64859
\(385\) 15.0018 0.764560
\(386\) −25.5527 −1.30060
\(387\) −30.4726 −1.54901
\(388\) 34.1267 1.73252
\(389\) 20.5243 1.04062 0.520311 0.853977i \(-0.325816\pi\)
0.520311 + 0.853977i \(0.325816\pi\)
\(390\) 10.1570 0.514319
\(391\) −0.190413 −0.00962958
\(392\) −13.8411 −0.699082
\(393\) −33.0566 −1.66748
\(394\) −15.6360 −0.787729
\(395\) −35.9211 −1.80739
\(396\) 136.827 6.87582
\(397\) −7.86087 −0.394526 −0.197263 0.980351i \(-0.563205\pi\)
−0.197263 + 0.980351i \(0.563205\pi\)
\(398\) 53.8912 2.70132
\(399\) −0.441128 −0.0220840
\(400\) −0.485886 −0.0242943
\(401\) −6.21341 −0.310283 −0.155141 0.987892i \(-0.549583\pi\)
−0.155141 + 0.987892i \(0.549583\pi\)
\(402\) −68.3558 −3.40928
\(403\) −5.80905 −0.289369
\(404\) −19.2225 −0.956355
\(405\) −53.6951 −2.66813
\(406\) 13.5386 0.671909
\(407\) 9.09232 0.450690
\(408\) 0.433479 0.0214604
\(409\) 24.1897 1.19610 0.598051 0.801458i \(-0.295942\pi\)
0.598051 + 0.801458i \(0.295942\pi\)
\(410\) −33.6951 −1.66408
\(411\) 35.4703 1.74962
\(412\) −49.6165 −2.44443
\(413\) −2.51767 −0.123887
\(414\) −54.2170 −2.66462
\(415\) −5.41054 −0.265593
\(416\) 3.90585 0.191500
\(417\) 46.9019 2.29679
\(418\) 1.82971 0.0894940
\(419\) 2.21763 0.108338 0.0541692 0.998532i \(-0.482749\pi\)
0.0541692 + 0.998532i \(0.482749\pi\)
\(420\) 23.8637 1.16443
\(421\) −9.47358 −0.461714 −0.230857 0.972988i \(-0.574153\pi\)
−0.230857 + 0.972988i \(0.574153\pi\)
\(422\) −21.6687 −1.05482
\(423\) −56.4904 −2.74666
\(424\) −14.6559 −0.711752
\(425\) 0.0334338 0.00162178
\(426\) 74.9892 3.63324
\(427\) 3.63347 0.175836
\(428\) 1.56281 0.0755412
\(429\) −11.7645 −0.567996
\(430\) 22.0441 1.06306
\(431\) 23.2815 1.12143 0.560715 0.828009i \(-0.310526\pi\)
0.560715 + 0.828009i \(0.310526\pi\)
\(432\) −11.6862 −0.562255
\(433\) −11.5779 −0.556397 −0.278199 0.960524i \(-0.589737\pi\)
−0.278199 + 0.960524i \(0.589737\pi\)
\(434\) −22.6284 −1.08620
\(435\) 44.2654 2.12236
\(436\) −48.5561 −2.32541
\(437\) −0.437289 −0.0209184
\(438\) −91.4973 −4.37191
\(439\) 20.9587 1.00030 0.500151 0.865938i \(-0.333278\pi\)
0.500151 + 0.865938i \(0.333278\pi\)
\(440\) −33.8547 −1.61396
\(441\) −43.4673 −2.06987
\(442\) −0.0773219 −0.00367783
\(443\) 14.8965 0.707756 0.353878 0.935292i \(-0.384863\pi\)
0.353878 + 0.935292i \(0.384863\pi\)
\(444\) 14.4634 0.686402
\(445\) 22.2870 1.05650
\(446\) 48.7055 2.30627
\(447\) −14.3544 −0.678941
\(448\) 13.4776 0.636758
\(449\) −22.1131 −1.04358 −0.521790 0.853074i \(-0.674736\pi\)
−0.521790 + 0.853074i \(0.674736\pi\)
\(450\) 9.51973 0.448765
\(451\) 39.0279 1.83775
\(452\) 13.8218 0.650121
\(453\) 9.76832 0.458956
\(454\) 19.6899 0.924095
\(455\) −1.45591 −0.0682542
\(456\) 0.995499 0.0466185
\(457\) −20.4898 −0.958472 −0.479236 0.877686i \(-0.659086\pi\)
−0.479236 + 0.877686i \(0.659086\pi\)
\(458\) −41.4323 −1.93600
\(459\) 0.804129 0.0375335
\(460\) 23.6560 1.10297
\(461\) −12.0820 −0.562713 −0.281357 0.959603i \(-0.590784\pi\)
−0.281357 + 0.959603i \(0.590784\pi\)
\(462\) −45.8271 −2.13207
\(463\) −20.4560 −0.950671 −0.475336 0.879805i \(-0.657673\pi\)
−0.475336 + 0.879805i \(0.657673\pi\)
\(464\) 4.89723 0.227348
\(465\) −73.9851 −3.43098
\(466\) 41.5546 1.92498
\(467\) 8.53872 0.395125 0.197562 0.980290i \(-0.436697\pi\)
0.197562 + 0.980290i \(0.436697\pi\)
\(468\) −13.2790 −0.613822
\(469\) 9.79818 0.452438
\(470\) 40.8655 1.88499
\(471\) −5.46019 −0.251592
\(472\) 5.68167 0.261520
\(473\) −25.5329 −1.17400
\(474\) 109.731 5.04013
\(475\) 0.0767817 0.00352299
\(476\) −0.181666 −0.00832666
\(477\) −46.0259 −2.10738
\(478\) 64.3714 2.94428
\(479\) 0.737828 0.0337122 0.0168561 0.999858i \(-0.494634\pi\)
0.0168561 + 0.999858i \(0.494634\pi\)
\(480\) 49.7457 2.27057
\(481\) −0.882405 −0.0402342
\(482\) 36.3340 1.65497
\(483\) 10.9524 0.498351
\(484\) 81.2110 3.69141
\(485\) −26.5175 −1.20410
\(486\) 70.3124 3.18943
\(487\) −25.0984 −1.13732 −0.568659 0.822573i \(-0.692538\pi\)
−0.568659 + 0.822573i \(0.692538\pi\)
\(488\) −8.19970 −0.371183
\(489\) 21.3591 0.965891
\(490\) 31.4445 1.42052
\(491\) 14.2534 0.643249 0.321624 0.946867i \(-0.395771\pi\)
0.321624 + 0.946867i \(0.395771\pi\)
\(492\) 62.0827 2.79890
\(493\) −0.336978 −0.0151767
\(494\) −0.177572 −0.00798935
\(495\) −106.319 −4.77867
\(496\) −8.18523 −0.367528
\(497\) −10.7490 −0.482160
\(498\) 16.5280 0.740639
\(499\) 3.45457 0.154648 0.0773240 0.997006i \(-0.475362\pi\)
0.0773240 + 0.997006i \(0.475362\pi\)
\(500\) 31.7431 1.41959
\(501\) −12.1583 −0.543195
\(502\) −1.04512 −0.0466462
\(503\) 20.4044 0.909786 0.454893 0.890546i \(-0.349678\pi\)
0.454893 + 0.890546i \(0.349678\pi\)
\(504\) −17.6920 −0.788065
\(505\) 14.9364 0.664663
\(506\) −45.4283 −2.01953
\(507\) −40.6398 −1.80488
\(508\) 6.81944 0.302564
\(509\) −6.58722 −0.291973 −0.145987 0.989287i \(-0.546636\pi\)
−0.145987 + 0.989287i \(0.546636\pi\)
\(510\) −0.984786 −0.0436071
\(511\) 13.1153 0.580187
\(512\) 9.42372 0.416474
\(513\) 1.84671 0.0815341
\(514\) 7.52359 0.331851
\(515\) 38.5535 1.69887
\(516\) −40.6158 −1.78801
\(517\) −47.3332 −2.08171
\(518\) −3.43729 −0.151026
\(519\) −13.8719 −0.608908
\(520\) 3.28558 0.144082
\(521\) 35.2478 1.54424 0.772118 0.635479i \(-0.219197\pi\)
0.772118 + 0.635479i \(0.219197\pi\)
\(522\) −95.9491 −4.19958
\(523\) 14.8176 0.647930 0.323965 0.946069i \(-0.394984\pi\)
0.323965 + 0.946069i \(0.394984\pi\)
\(524\) −31.2637 −1.36576
\(525\) −1.92309 −0.0839303
\(526\) −61.7076 −2.69058
\(527\) 0.563225 0.0245345
\(528\) −16.5768 −0.721411
\(529\) −12.1429 −0.527953
\(530\) 33.2954 1.44626
\(531\) 17.8430 0.774318
\(532\) −0.417203 −0.0180880
\(533\) −3.78764 −0.164061
\(534\) −68.0819 −2.94619
\(535\) −1.21435 −0.0525008
\(536\) −22.1117 −0.955079
\(537\) 9.53137 0.411309
\(538\) 49.3972 2.12966
\(539\) −36.4211 −1.56877
\(540\) −99.9012 −4.29906
\(541\) 14.4561 0.621516 0.310758 0.950489i \(-0.399417\pi\)
0.310758 + 0.950489i \(0.399417\pi\)
\(542\) 23.5993 1.01368
\(543\) −3.49445 −0.149961
\(544\) −0.378698 −0.0162365
\(545\) 37.7295 1.61615
\(546\) 4.44750 0.190335
\(547\) 38.3084 1.63795 0.818975 0.573830i \(-0.194543\pi\)
0.818975 + 0.573830i \(0.194543\pi\)
\(548\) 33.5465 1.43303
\(549\) −25.7507 −1.09901
\(550\) 7.97657 0.340122
\(551\) −0.773881 −0.0329684
\(552\) −24.7164 −1.05200
\(553\) −15.7290 −0.668864
\(554\) 62.1881 2.64212
\(555\) −11.2385 −0.477046
\(556\) 44.3581 1.88120
\(557\) −32.7639 −1.38825 −0.694126 0.719854i \(-0.744209\pi\)
−0.694126 + 0.719854i \(0.744209\pi\)
\(558\) 160.369 6.78897
\(559\) 2.47795 0.104806
\(560\) −2.05145 −0.0866896
\(561\) 1.14064 0.0481581
\(562\) −41.6245 −1.75582
\(563\) −9.88871 −0.416759 −0.208380 0.978048i \(-0.566819\pi\)
−0.208380 + 0.978048i \(0.566819\pi\)
\(564\) −75.2941 −3.17045
\(565\) −10.7399 −0.451832
\(566\) −44.1661 −1.85644
\(567\) −23.5118 −0.987402
\(568\) 24.2575 1.01782
\(569\) 45.8001 1.92004 0.960019 0.279934i \(-0.0903125\pi\)
0.960019 + 0.279934i \(0.0903125\pi\)
\(570\) −2.26159 −0.0947277
\(571\) −12.5093 −0.523497 −0.261748 0.965136i \(-0.584299\pi\)
−0.261748 + 0.965136i \(0.584299\pi\)
\(572\) −11.1264 −0.465220
\(573\) −11.5556 −0.482743
\(574\) −14.7542 −0.615830
\(575\) −1.90635 −0.0795002
\(576\) −95.5170 −3.97987
\(577\) −24.3421 −1.01337 −0.506687 0.862130i \(-0.669130\pi\)
−0.506687 + 0.862130i \(0.669130\pi\)
\(578\) −38.1561 −1.58708
\(579\) −36.5828 −1.52033
\(580\) 41.8646 1.73833
\(581\) −2.36914 −0.0982886
\(582\) 81.0051 3.35777
\(583\) −38.5650 −1.59720
\(584\) −29.5975 −1.22475
\(585\) 10.3182 0.426603
\(586\) −75.3492 −3.11265
\(587\) 44.0426 1.81783 0.908917 0.416977i \(-0.136910\pi\)
0.908917 + 0.416977i \(0.136910\pi\)
\(588\) −57.9360 −2.38924
\(589\) 1.29346 0.0532962
\(590\) −12.9077 −0.531402
\(591\) −22.3855 −0.920815
\(592\) −1.24335 −0.0511014
\(593\) −13.6802 −0.561777 −0.280888 0.959740i \(-0.590629\pi\)
−0.280888 + 0.959740i \(0.590629\pi\)
\(594\) 191.847 7.87160
\(595\) 0.141160 0.00578700
\(596\) −13.5759 −0.556090
\(597\) 77.1541 3.15771
\(598\) 4.40879 0.180289
\(599\) 31.3267 1.27998 0.639988 0.768385i \(-0.278939\pi\)
0.639988 + 0.768385i \(0.278939\pi\)
\(600\) 4.33985 0.177174
\(601\) −29.4453 −1.20110 −0.600550 0.799587i \(-0.705052\pi\)
−0.600550 + 0.799587i \(0.705052\pi\)
\(602\) 9.65255 0.393408
\(603\) −69.4404 −2.82783
\(604\) 9.23852 0.375910
\(605\) −63.1033 −2.56551
\(606\) −45.6276 −1.85349
\(607\) 2.52821 0.102617 0.0513084 0.998683i \(-0.483661\pi\)
0.0513084 + 0.998683i \(0.483661\pi\)
\(608\) −0.869691 −0.0352706
\(609\) 19.3827 0.785427
\(610\) 18.6282 0.754235
\(611\) 4.59366 0.185840
\(612\) 1.28748 0.0520434
\(613\) −42.6658 −1.72326 −0.861628 0.507541i \(-0.830555\pi\)
−0.861628 + 0.507541i \(0.830555\pi\)
\(614\) 65.5157 2.64400
\(615\) −48.2400 −1.94523
\(616\) −14.8241 −0.597281
\(617\) −11.0656 −0.445485 −0.222742 0.974877i \(-0.571501\pi\)
−0.222742 + 0.974877i \(0.571501\pi\)
\(618\) −117.773 −4.73751
\(619\) −14.9668 −0.601568 −0.300784 0.953692i \(-0.597248\pi\)
−0.300784 + 0.953692i \(0.597248\pi\)
\(620\) −69.9724 −2.81016
\(621\) −45.8503 −1.83991
\(622\) 70.5154 2.82741
\(623\) 9.75892 0.390983
\(624\) 1.60877 0.0644022
\(625\) −27.5581 −1.10232
\(626\) −30.6250 −1.22402
\(627\) 2.61953 0.104614
\(628\) −5.16405 −0.206068
\(629\) 0.0855548 0.00341129
\(630\) 40.1931 1.60133
\(631\) −39.4824 −1.57177 −0.785886 0.618372i \(-0.787793\pi\)
−0.785886 + 0.618372i \(0.787793\pi\)
\(632\) 35.4958 1.41195
\(633\) −31.0223 −1.23303
\(634\) −10.3047 −0.409253
\(635\) −5.29891 −0.210281
\(636\) −61.3463 −2.43254
\(637\) 3.53465 0.140048
\(638\) −80.3956 −3.18289
\(639\) 76.1792 3.01360
\(640\) 38.1417 1.50768
\(641\) −30.5297 −1.20585 −0.602924 0.797798i \(-0.705998\pi\)
−0.602924 + 0.797798i \(0.705998\pi\)
\(642\) 3.70957 0.146405
\(643\) 30.0564 1.18531 0.592654 0.805457i \(-0.298080\pi\)
0.592654 + 0.805457i \(0.298080\pi\)
\(644\) 10.3584 0.408177
\(645\) 31.5597 1.24266
\(646\) 0.0172168 0.000677385 0
\(647\) 7.73364 0.304041 0.152020 0.988377i \(-0.451422\pi\)
0.152020 + 0.988377i \(0.451422\pi\)
\(648\) 53.0593 2.08437
\(649\) 14.9506 0.586862
\(650\) −0.774121 −0.0303635
\(651\) −32.3963 −1.26971
\(652\) 20.2006 0.791118
\(653\) −29.8860 −1.16953 −0.584764 0.811204i \(-0.698813\pi\)
−0.584764 + 0.811204i \(0.698813\pi\)
\(654\) −115.255 −4.50684
\(655\) 24.2928 0.949199
\(656\) −5.33696 −0.208373
\(657\) −92.9492 −3.62629
\(658\) 17.8940 0.697581
\(659\) −26.2518 −1.02262 −0.511312 0.859395i \(-0.670840\pi\)
−0.511312 + 0.859395i \(0.670840\pi\)
\(660\) −141.708 −5.51599
\(661\) 45.9335 1.78661 0.893304 0.449454i \(-0.148381\pi\)
0.893304 + 0.449454i \(0.148381\pi\)
\(662\) 30.6783 1.19235
\(663\) −0.110699 −0.00429919
\(664\) 5.34648 0.207484
\(665\) 0.324178 0.0125711
\(666\) 24.3604 0.943945
\(667\) 19.2140 0.743970
\(668\) −11.4989 −0.444907
\(669\) 69.7298 2.69591
\(670\) 50.2337 1.94070
\(671\) −21.5765 −0.832950
\(672\) 21.7824 0.840274
\(673\) −15.5366 −0.598893 −0.299447 0.954113i \(-0.596802\pi\)
−0.299447 + 0.954113i \(0.596802\pi\)
\(674\) 1.86936 0.0720049
\(675\) 8.05067 0.309870
\(676\) −38.4356 −1.47829
\(677\) 21.0071 0.807370 0.403685 0.914898i \(-0.367729\pi\)
0.403685 + 0.914898i \(0.367729\pi\)
\(678\) 32.8081 1.25999
\(679\) −11.6113 −0.445602
\(680\) −0.318558 −0.0122161
\(681\) 28.1894 1.08022
\(682\) 134.373 5.14541
\(683\) 20.4044 0.780754 0.390377 0.920655i \(-0.372345\pi\)
0.390377 + 0.920655i \(0.372345\pi\)
\(684\) 2.95675 0.113054
\(685\) −26.0666 −0.995953
\(686\) 30.0209 1.14620
\(687\) −59.3171 −2.26309
\(688\) 3.49156 0.133114
\(689\) 3.74271 0.142586
\(690\) 56.1512 2.13764
\(691\) 35.5763 1.35339 0.676693 0.736265i \(-0.263412\pi\)
0.676693 + 0.736265i \(0.263412\pi\)
\(692\) −13.1195 −0.498729
\(693\) −46.5543 −1.76845
\(694\) 77.1475 2.92848
\(695\) −34.4675 −1.30743
\(696\) −43.7412 −1.65801
\(697\) 0.367236 0.0139100
\(698\) 27.8081 1.05255
\(699\) 59.4922 2.25020
\(700\) −1.81878 −0.0687436
\(701\) 35.1534 1.32772 0.663862 0.747855i \(-0.268916\pi\)
0.663862 + 0.747855i \(0.268916\pi\)
\(702\) −18.6187 −0.702717
\(703\) 0.196479 0.00741036
\(704\) −80.0335 −3.01638
\(705\) 58.5057 2.20345
\(706\) 65.6610 2.47118
\(707\) 6.54030 0.245973
\(708\) 23.7823 0.893792
\(709\) −37.9452 −1.42506 −0.712531 0.701640i \(-0.752451\pi\)
−0.712531 + 0.701640i \(0.752451\pi\)
\(710\) −55.1085 −2.06819
\(711\) 111.473 4.18055
\(712\) −22.0231 −0.825350
\(713\) −32.1143 −1.20269
\(714\) −0.431213 −0.0161378
\(715\) 8.64557 0.323326
\(716\) 9.01442 0.336885
\(717\) 92.1582 3.44171
\(718\) −42.3725 −1.58133
\(719\) 48.3250 1.80222 0.901109 0.433592i \(-0.142754\pi\)
0.901109 + 0.433592i \(0.142754\pi\)
\(720\) 14.5388 0.541829
\(721\) 16.8816 0.628704
\(722\) −42.6139 −1.58592
\(723\) 52.0180 1.93457
\(724\) −3.30492 −0.122826
\(725\) −3.37371 −0.125297
\(726\) 192.767 7.15425
\(727\) 2.75644 0.102231 0.0511154 0.998693i \(-0.483722\pi\)
0.0511154 + 0.998693i \(0.483722\pi\)
\(728\) 1.43867 0.0533207
\(729\) 32.4619 1.20229
\(730\) 67.2401 2.48867
\(731\) −0.240254 −0.00888610
\(732\) −34.3222 −1.26859
\(733\) 2.48193 0.0916722 0.0458361 0.998949i \(-0.485405\pi\)
0.0458361 + 0.998949i \(0.485405\pi\)
\(734\) 31.8191 1.17446
\(735\) 45.0180 1.66051
\(736\) 21.5928 0.795922
\(737\) −58.1840 −2.14324
\(738\) 104.564 3.84907
\(739\) −34.4121 −1.26587 −0.632935 0.774205i \(-0.718150\pi\)
−0.632935 + 0.774205i \(0.718150\pi\)
\(740\) −10.6289 −0.390727
\(741\) −0.254224 −0.00933914
\(742\) 14.5793 0.535221
\(743\) −24.8231 −0.910672 −0.455336 0.890320i \(-0.650481\pi\)
−0.455336 + 0.890320i \(0.650481\pi\)
\(744\) 73.1090 2.68031
\(745\) 10.5489 0.386480
\(746\) −54.9069 −2.01028
\(747\) 16.7903 0.614325
\(748\) 1.07878 0.0394441
\(749\) −0.531732 −0.0194291
\(750\) 75.3471 2.75129
\(751\) 4.68815 0.171073 0.0855365 0.996335i \(-0.472740\pi\)
0.0855365 + 0.996335i \(0.472740\pi\)
\(752\) 6.47269 0.236035
\(753\) −1.49627 −0.0545269
\(754\) 7.80234 0.284145
\(755\) −7.17860 −0.261256
\(756\) −43.7443 −1.59096
\(757\) −33.1228 −1.20387 −0.601934 0.798546i \(-0.705603\pi\)
−0.601934 + 0.798546i \(0.705603\pi\)
\(758\) 57.2224 2.07841
\(759\) −65.0380 −2.36073
\(760\) −0.731578 −0.0265371
\(761\) −6.31858 −0.229048 −0.114524 0.993420i \(-0.536534\pi\)
−0.114524 + 0.993420i \(0.536534\pi\)
\(762\) 16.1870 0.586394
\(763\) 16.5208 0.598093
\(764\) −10.9289 −0.395393
\(765\) −1.00041 −0.0361700
\(766\) −11.6832 −0.422130
\(767\) −1.45095 −0.0523906
\(768\) −32.7476 −1.18168
\(769\) 0.702154 0.0253203 0.0126602 0.999920i \(-0.495970\pi\)
0.0126602 + 0.999920i \(0.495970\pi\)
\(770\) 33.6777 1.21366
\(771\) 10.7713 0.387917
\(772\) −34.5987 −1.24523
\(773\) 24.4052 0.877796 0.438898 0.898537i \(-0.355369\pi\)
0.438898 + 0.898537i \(0.355369\pi\)
\(774\) −68.4084 −2.45889
\(775\) 5.63882 0.202552
\(776\) 26.2035 0.940649
\(777\) −4.92105 −0.176542
\(778\) 46.0753 1.65188
\(779\) 0.843368 0.0302168
\(780\) 13.7527 0.492426
\(781\) 63.8304 2.28403
\(782\) −0.427461 −0.0152860
\(783\) −81.1425 −2.89979
\(784\) 4.98050 0.177875
\(785\) 4.01261 0.143216
\(786\) −74.2093 −2.64696
\(787\) −30.6886 −1.09393 −0.546966 0.837155i \(-0.684217\pi\)
−0.546966 + 0.837155i \(0.684217\pi\)
\(788\) −21.1713 −0.754198
\(789\) −88.3445 −3.14515
\(790\) −80.6400 −2.86904
\(791\) −4.70274 −0.167210
\(792\) 105.060 3.73313
\(793\) 2.09398 0.0743595
\(794\) −17.6470 −0.626269
\(795\) 47.6679 1.69061
\(796\) 72.9695 2.58634
\(797\) 4.18327 0.148179 0.0740895 0.997252i \(-0.476395\pi\)
0.0740895 + 0.997252i \(0.476395\pi\)
\(798\) −0.990295 −0.0350561
\(799\) −0.445385 −0.0157566
\(800\) −3.79140 −0.134046
\(801\) −69.1622 −2.44373
\(802\) −13.9486 −0.492542
\(803\) −77.8820 −2.74839
\(804\) −92.5547 −3.26415
\(805\) −8.04875 −0.283681
\(806\) −13.0408 −0.459344
\(807\) 70.7202 2.48947
\(808\) −14.7596 −0.519240
\(809\) 35.5012 1.24815 0.624077 0.781363i \(-0.285475\pi\)
0.624077 + 0.781363i \(0.285475\pi\)
\(810\) −120.541 −4.23538
\(811\) −43.6179 −1.53163 −0.765815 0.643061i \(-0.777664\pi\)
−0.765815 + 0.643061i \(0.777664\pi\)
\(812\) 18.3315 0.643308
\(813\) 33.7862 1.18493
\(814\) 20.4115 0.715423
\(815\) −15.6965 −0.549824
\(816\) −0.155980 −0.00546040
\(817\) −0.551750 −0.0193033
\(818\) 54.3038 1.89869
\(819\) 4.51807 0.157874
\(820\) −45.6237 −1.59325
\(821\) −49.4272 −1.72502 −0.862511 0.506038i \(-0.831109\pi\)
−0.862511 + 0.506038i \(0.831109\pi\)
\(822\) 79.6278 2.77734
\(823\) 36.8287 1.28377 0.641884 0.766801i \(-0.278153\pi\)
0.641884 + 0.766801i \(0.278153\pi\)
\(824\) −38.0970 −1.32717
\(825\) 11.4198 0.397585
\(826\) −5.65197 −0.196657
\(827\) 5.91133 0.205557 0.102779 0.994704i \(-0.467227\pi\)
0.102779 + 0.994704i \(0.467227\pi\)
\(828\) −73.4106 −2.55119
\(829\) −1.13503 −0.0394214 −0.0197107 0.999806i \(-0.506275\pi\)
−0.0197107 + 0.999806i \(0.506275\pi\)
\(830\) −12.1462 −0.421601
\(831\) 89.0324 3.08850
\(832\) 7.76721 0.269279
\(833\) −0.342707 −0.0118741
\(834\) 105.291 3.64592
\(835\) 8.93499 0.309208
\(836\) 2.47745 0.0856845
\(837\) 135.621 4.68776
\(838\) 4.97840 0.171976
\(839\) −4.01466 −0.138602 −0.0693008 0.997596i \(-0.522077\pi\)
−0.0693008 + 0.997596i \(0.522077\pi\)
\(840\) 18.3232 0.632210
\(841\) 5.00354 0.172536
\(842\) −21.2674 −0.732923
\(843\) −59.5923 −2.05247
\(844\) −29.3397 −1.00992
\(845\) 29.8656 1.02741
\(846\) −126.816 −4.36003
\(847\) −27.6314 −0.949425
\(848\) 5.27366 0.181098
\(849\) −63.2310 −2.17008
\(850\) 0.0750561 0.00257440
\(851\) −4.87822 −0.167223
\(852\) 101.537 3.47859
\(853\) −17.9650 −0.615111 −0.307555 0.951530i \(-0.599511\pi\)
−0.307555 + 0.951530i \(0.599511\pi\)
\(854\) 8.15684 0.279121
\(855\) −2.29748 −0.0785721
\(856\) 1.19997 0.0410140
\(857\) −45.8035 −1.56462 −0.782308 0.622892i \(-0.785958\pi\)
−0.782308 + 0.622892i \(0.785958\pi\)
\(858\) −26.4103 −0.901634
\(859\) −31.5308 −1.07582 −0.537908 0.843003i \(-0.680785\pi\)
−0.537908 + 0.843003i \(0.680785\pi\)
\(860\) 29.8480 1.01781
\(861\) −21.1231 −0.719874
\(862\) 52.2650 1.78015
\(863\) −1.69411 −0.0576683 −0.0288341 0.999584i \(-0.509179\pi\)
−0.0288341 + 0.999584i \(0.509179\pi\)
\(864\) −91.1883 −3.10229
\(865\) 10.1943 0.346615
\(866\) −25.9914 −0.883223
\(867\) −54.6267 −1.85522
\(868\) −30.6392 −1.03996
\(869\) 93.4026 3.16847
\(870\) 99.3721 3.36903
\(871\) 5.64673 0.191332
\(872\) −37.2827 −1.26255
\(873\) 82.2905 2.78511
\(874\) −0.981677 −0.0332057
\(875\) −10.8003 −0.365117
\(876\) −123.889 −4.18581
\(877\) −25.7896 −0.870852 −0.435426 0.900225i \(-0.643402\pi\)
−0.435426 + 0.900225i \(0.643402\pi\)
\(878\) 47.0505 1.58788
\(879\) −107.875 −3.63852
\(880\) 12.1820 0.410656
\(881\) −28.7157 −0.967456 −0.483728 0.875218i \(-0.660718\pi\)
−0.483728 + 0.875218i \(0.660718\pi\)
\(882\) −97.5804 −3.28570
\(883\) −56.0227 −1.88532 −0.942658 0.333761i \(-0.891682\pi\)
−0.942658 + 0.333761i \(0.891682\pi\)
\(884\) −0.104695 −0.00352127
\(885\) −18.4795 −0.621182
\(886\) 33.4415 1.12349
\(887\) 7.16363 0.240531 0.120266 0.992742i \(-0.461625\pi\)
0.120266 + 0.992742i \(0.461625\pi\)
\(888\) 11.1054 0.372672
\(889\) −2.32026 −0.0778190
\(890\) 50.0324 1.67709
\(891\) 139.619 4.67741
\(892\) 65.9479 2.20810
\(893\) −1.02284 −0.0342281
\(894\) −32.2245 −1.07775
\(895\) −7.00447 −0.234133
\(896\) 16.7013 0.557951
\(897\) 6.31190 0.210748
\(898\) −49.6420 −1.65658
\(899\) −56.8335 −1.89550
\(900\) 12.8899 0.429662
\(901\) −0.362880 −0.0120893
\(902\) 87.6144 2.91724
\(903\) 13.8192 0.459874
\(904\) 10.6127 0.352974
\(905\) 2.56802 0.0853639
\(906\) 21.9291 0.728545
\(907\) 20.8611 0.692681 0.346340 0.938109i \(-0.387424\pi\)
0.346340 + 0.938109i \(0.387424\pi\)
\(908\) 26.6605 0.884759
\(909\) −46.3516 −1.53739
\(910\) −3.26840 −0.108346
\(911\) 53.1969 1.76249 0.881247 0.472657i \(-0.156705\pi\)
0.881247 + 0.472657i \(0.156705\pi\)
\(912\) −0.358213 −0.0118616
\(913\) 14.0686 0.465602
\(914\) −45.9979 −1.52148
\(915\) 26.6694 0.881662
\(916\) −56.1000 −1.85359
\(917\) 10.6372 0.351272
\(918\) 1.80520 0.0595805
\(919\) 24.1820 0.797692 0.398846 0.917018i \(-0.369411\pi\)
0.398846 + 0.917018i \(0.369411\pi\)
\(920\) 18.1637 0.598840
\(921\) 93.7965 3.09070
\(922\) −27.1230 −0.893248
\(923\) −6.19470 −0.203901
\(924\) −62.0506 −2.04131
\(925\) 0.856546 0.0281631
\(926\) −45.9220 −1.50909
\(927\) −119.641 −3.92954
\(928\) 38.2134 1.25441
\(929\) −24.7183 −0.810982 −0.405491 0.914099i \(-0.632899\pi\)
−0.405491 + 0.914099i \(0.632899\pi\)
\(930\) −166.090 −5.44632
\(931\) −0.787038 −0.0257941
\(932\) 56.2655 1.84304
\(933\) 100.954 3.30510
\(934\) 19.1687 0.627219
\(935\) −0.838244 −0.0274135
\(936\) −10.1960 −0.333266
\(937\) 12.9847 0.424191 0.212095 0.977249i \(-0.431971\pi\)
0.212095 + 0.977249i \(0.431971\pi\)
\(938\) 21.9961 0.718198
\(939\) −43.8448 −1.43082
\(940\) 55.3326 1.80475
\(941\) 40.1728 1.30960 0.654798 0.755804i \(-0.272754\pi\)
0.654798 + 0.755804i \(0.272754\pi\)
\(942\) −12.2577 −0.399376
\(943\) −20.9393 −0.681877
\(944\) −2.04445 −0.0665413
\(945\) 33.9906 1.10571
\(946\) −57.3192 −1.86361
\(947\) 17.1892 0.558574 0.279287 0.960208i \(-0.409902\pi\)
0.279287 + 0.960208i \(0.409902\pi\)
\(948\) 148.578 4.82558
\(949\) 7.55840 0.245356
\(950\) 0.172369 0.00559238
\(951\) −14.7529 −0.478396
\(952\) −0.139489 −0.00452085
\(953\) −5.91681 −0.191664 −0.0958322 0.995398i \(-0.530551\pi\)
−0.0958322 + 0.995398i \(0.530551\pi\)
\(954\) −103.324 −3.34525
\(955\) 8.49207 0.274797
\(956\) 87.1599 2.81895
\(957\) −115.099 −3.72064
\(958\) 1.65636 0.0535146
\(959\) −11.4139 −0.368575
\(960\) 98.9245 3.19278
\(961\) 63.9915 2.06424
\(962\) −1.98092 −0.0638676
\(963\) 3.76843 0.121436
\(964\) 49.1967 1.58452
\(965\) 26.8842 0.865433
\(966\) 24.5872 0.791080
\(967\) 33.5827 1.07995 0.539974 0.841682i \(-0.318434\pi\)
0.539974 + 0.841682i \(0.318434\pi\)
\(968\) 62.3561 2.00420
\(969\) 0.0246486 0.000791828 0
\(970\) −59.5295 −1.91138
\(971\) −19.1921 −0.615903 −0.307951 0.951402i \(-0.599643\pi\)
−0.307951 + 0.951402i \(0.599643\pi\)
\(972\) 95.2040 3.05367
\(973\) −15.0925 −0.483842
\(974\) −56.3438 −1.80537
\(975\) −1.10828 −0.0354934
\(976\) 2.95052 0.0944440
\(977\) −18.8689 −0.603671 −0.301835 0.953360i \(-0.597599\pi\)
−0.301835 + 0.953360i \(0.597599\pi\)
\(978\) 47.9494 1.53325
\(979\) −57.9509 −1.85212
\(980\) 42.5763 1.36005
\(981\) −117.084 −3.73821
\(982\) 31.9978 1.02109
\(983\) −58.9832 −1.88127 −0.940637 0.339415i \(-0.889771\pi\)
−0.940637 + 0.339415i \(0.889771\pi\)
\(984\) 47.6688 1.51963
\(985\) 16.4508 0.524164
\(986\) −0.756488 −0.0240915
\(987\) 25.6182 0.815436
\(988\) −0.240435 −0.00764927
\(989\) 13.6989 0.435601
\(990\) −238.676 −7.58564
\(991\) −34.3162 −1.09009 −0.545046 0.838406i \(-0.683488\pi\)
−0.545046 + 0.838406i \(0.683488\pi\)
\(992\) −63.8698 −2.02787
\(993\) 43.9210 1.39379
\(994\) −24.1307 −0.765378
\(995\) −56.6994 −1.79749
\(996\) 22.3792 0.709112
\(997\) −29.9366 −0.948102 −0.474051 0.880497i \(-0.657209\pi\)
−0.474051 + 0.880497i \(0.657209\pi\)
\(998\) 7.75523 0.245488
\(999\) 20.6011 0.651791
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1759.2.a.b.1.74 86
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1759.2.a.b.1.74 86 1.1 even 1 trivial