Properties

Label 176.2.m
Level 176176
Weight 22
Character orbit 176.m
Rep. character χ176(49,)\chi_{176}(49,\cdot)
Character field Q(ζ5)\Q(\zeta_{5})
Dimension 2020
Newform subspaces 44
Sturm bound 4848
Trace bound 33

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 176=2411 176 = 2^{4} \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 176.m (of order 55 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 11 11
Character field: Q(ζ5)\Q(\zeta_{5})
Newform subspaces: 4 4
Sturm bound: 4848
Trace bound: 33
Distinguishing TpT_p: 33

Dimensions

The following table gives the dimensions of various subspaces of M2(176,[χ])M_{2}(176, [\chi]).

Total New Old
Modular forms 120 28 92
Cusp forms 72 20 52
Eisenstein series 48 8 40

Trace form

20q+3q33q5+q710q9+2q113q13+3q157q17+9q192q21+16q2312q25+3q27+5q29+3q31+5q3313q3515q37++46q99+O(q100) 20 q + 3 q^{3} - 3 q^{5} + q^{7} - 10 q^{9} + 2 q^{11} - 3 q^{13} + 3 q^{15} - 7 q^{17} + 9 q^{19} - 2 q^{21} + 16 q^{23} - 12 q^{25} + 3 q^{27} + 5 q^{29} + 3 q^{31} + 5 q^{33} - 13 q^{35} - 15 q^{37}+ \cdots + 46 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(176,[χ])S_{2}^{\mathrm{new}}(176, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
176.2.m.a 176.m 11.c 44 1.4051.405 Q(ζ10)\Q(\zeta_{10}) None 88.2.i.a 00 3-3 33 33 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(ζ10+ζ102ζ103)q3+(1+ζ102+)q5+q+(-\zeta_{10}+\zeta_{10}^{2}-\zeta_{10}^{3})q^{3}+(1+\zeta_{10}^{2}+\cdots)q^{5}+\cdots
176.2.m.b 176.m 11.c 44 1.4051.405 Q(ζ10)\Q(\zeta_{10}) None 44.2.e.a 00 11 33 77 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(ζ10+ζ102+ζ103)q3+(1+ζ102+)q5+q+(\zeta_{10}+\zeta_{10}^{2}+\zeta_{10}^{3})q^{3}+(1+\zeta_{10}^{2}+\cdots)q^{5}+\cdots
176.2.m.c 176.m 11.c 44 1.4051.405 Q(ζ10)\Q(\zeta_{10}) None 22.2.c.a 00 44 6-6 2-2 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(ζ102ζ102+ζ103)q3+(2+)q5+q+(\zeta_{10}-2\zeta_{10}^{2}+\zeta_{10}^{3})q^{3}+(-2+\cdots)q^{5}+\cdots
176.2.m.d 176.m 11.c 88 1.4051.405 8.0.682515625.5 None 88.2.i.b 00 11 3-3 7-7 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(β1β4+β6)q3+(β3β4β5+)q5+q+(-\beta _{1}-\beta _{4}+\beta _{6})q^{3}+(\beta _{3}-\beta _{4}-\beta _{5}+\cdots)q^{5}+\cdots

Decomposition of S2old(176,[χ])S_{2}^{\mathrm{old}}(176, [\chi]) into lower level spaces

S2old(176,[χ]) S_{2}^{\mathrm{old}}(176, [\chi]) \simeq S2new(22,[χ])S_{2}^{\mathrm{new}}(22, [\chi])4^{\oplus 4}\oplusS2new(44,[χ])S_{2}^{\mathrm{new}}(44, [\chi])3^{\oplus 3}\oplusS2new(88,[χ])S_{2}^{\mathrm{new}}(88, [\chi])2^{\oplus 2}