Defining parameters
Level: | \( N \) | \(=\) | \( 176 = 2^{4} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 176.m (of order \(5\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 11 \) |
Character field: | \(\Q(\zeta_{5})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(48\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(176, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 120 | 28 | 92 |
Cusp forms | 72 | 20 | 52 |
Eisenstein series | 48 | 8 | 40 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(176, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
176.2.m.a | $4$ | $1.405$ | \(\Q(\zeta_{10})\) | None | \(0\) | \(-3\) | \(3\) | \(3\) | \(q+(-\zeta_{10}+\zeta_{10}^{2}-\zeta_{10}^{3})q^{3}+(1+\zeta_{10}^{2}+\cdots)q^{5}+\cdots\) |
176.2.m.b | $4$ | $1.405$ | \(\Q(\zeta_{10})\) | None | \(0\) | \(1\) | \(3\) | \(7\) | \(q+(\zeta_{10}+\zeta_{10}^{2}+\zeta_{10}^{3})q^{3}+(1+\zeta_{10}^{2}+\cdots)q^{5}+\cdots\) |
176.2.m.c | $4$ | $1.405$ | \(\Q(\zeta_{10})\) | None | \(0\) | \(4\) | \(-6\) | \(-2\) | \(q+(\zeta_{10}-2\zeta_{10}^{2}+\zeta_{10}^{3})q^{3}+(-2+\cdots)q^{5}+\cdots\) |
176.2.m.d | $8$ | $1.405$ | 8.0.682515625.5 | None | \(0\) | \(1\) | \(-3\) | \(-7\) | \(q+(-\beta _{1}-\beta _{4}+\beta _{6})q^{3}+(\beta _{3}-\beta _{4}-\beta _{5}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(176, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(176, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(22, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(44, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(88, [\chi])\)\(^{\oplus 2}\)