Properties

Label 176.2.x
Level $176$
Weight $2$
Character orbit 176.x
Rep. character $\chi_{176}(19,\cdot)$
Character field $\Q(\zeta_{20})$
Dimension $176$
Newform subspaces $1$
Sturm bound $48$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 176.x (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 176 \)
Character field: \(\Q(\zeta_{20})\)
Newform subspaces: \( 1 \)
Sturm bound: \(48\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(176, [\chi])\).

Total New Old
Modular forms 208 208 0
Cusp forms 176 176 0
Eisenstein series 32 32 0

Trace form

\( 176 q - 10 q^{2} - 6 q^{3} - 10 q^{4} - 6 q^{5} - 10 q^{6} - 20 q^{7} - 10 q^{8} - 4 q^{11} - 32 q^{12} - 10 q^{13} - 12 q^{14} + 14 q^{16} - 20 q^{17} + 40 q^{18} - 10 q^{19} - 14 q^{20} - 66 q^{22} - 16 q^{23}+ \cdots - 68 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(176, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
176.2.x.a 176.x 176.x $176$ $1.405$ None 176.2.x.a \(-10\) \(-6\) \(-6\) \(-20\) $\mathrm{SU}(2)[C_{20}]$