Defining parameters
Level: | \( N \) | \(=\) | \( 176 = 2^{4} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 176.x (of order \(20\) and degree \(8\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 176 \) |
Character field: | \(\Q(\zeta_{20})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(48\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(176, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 208 | 208 | 0 |
Cusp forms | 176 | 176 | 0 |
Eisenstein series | 32 | 32 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(176, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
176.2.x.a | $176$ | $1.405$ | None | \(-10\) | \(-6\) | \(-6\) | \(-20\) |