Properties

Label 176.4.a
Level 176176
Weight 44
Character orbit 176.a
Rep. character χ176(1,)\chi_{176}(1,\cdot)
Character field Q\Q
Dimension 1515
Newform subspaces 1010
Sturm bound 9696
Trace bound 55

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 176=2411 176 = 2^{4} \cdot 11
Weight: k k == 4 4
Character orbit: [χ][\chi] == 176.a (trivial)
Character field: Q\Q
Newform subspaces: 10 10
Sturm bound: 9696
Trace bound: 55
Distinguishing TpT_p: 33

Dimensions

The following table gives the dimensions of various subspaces of M4(Γ0(176))M_{4}(\Gamma_0(176)).

Total New Old
Modular forms 78 15 63
Cusp forms 66 15 51
Eisenstein series 12 0 12

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

221111FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
++++++21215516161818551313330033
++--18182216161515221313330033
-++-18184414141515441111330033
--++21214417171818441414330033
Plus space++42429933333636992727660066
Minus space-36366630303030662424660066

Trace form

15q6q3+2q5+36q7+135q933q1146q13+66q1526q17+204q19+136q21+138q23+397q25+138q27198q29318q31+228q35+330q37+891q99+O(q100) 15 q - 6 q^{3} + 2 q^{5} + 36 q^{7} + 135 q^{9} - 33 q^{11} - 46 q^{13} + 66 q^{15} - 26 q^{17} + 204 q^{19} + 136 q^{21} + 138 q^{23} + 397 q^{25} + 138 q^{27} - 198 q^{29} - 318 q^{31} + 228 q^{35} + 330 q^{37}+ \cdots - 891 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(Γ0(176))S_{4}^{\mathrm{new}}(\Gamma_0(176)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 11
176.4.a.a 176.a 1.a 11 10.38410.384 Q\Q None 88.4.a.b 00 7-7 99 2-2 ++ - SU(2)\mathrm{SU}(2) q7q3+9q52q7+22q9+11q11+q-7q^{3}+9q^{5}-2q^{7}+22q^{9}+11q^{11}+\cdots
176.4.a.b 176.a 1.a 11 10.38410.384 Q\Q None 22.4.a.b 00 4-4 1414 88 - - SU(2)\mathrm{SU}(2) q4q3+14q5+8q711q9+11q11+q-4q^{3}+14q^{5}+8q^{7}-11q^{9}+11q^{11}+\cdots
176.4.a.c 176.a 1.a 11 10.38410.384 Q\Q None 22.4.a.c 00 1-1 3-3 1010 - ++ SU(2)\mathrm{SU}(2) qq33q5+10q726q911q11+q-q^{3}-3q^{5}+10q^{7}-26q^{9}-11q^{11}+\cdots
176.4.a.d 176.a 1.a 11 10.38410.384 Q\Q None 88.4.a.a 00 11 7-7 66 ++ - SU(2)\mathrm{SU}(2) q+q37q5+6q726q9+11q11+q+q^{3}-7q^{5}+6q^{7}-26q^{9}+11q^{11}+\cdots
176.4.a.e 176.a 1.a 11 10.38410.384 Q\Q None 44.4.a.a 00 55 7-7 2626 - - SU(2)\mathrm{SU}(2) q+5q37q5+26q72q9+11q11+q+5q^{3}-7q^{5}+26q^{7}-2q^{9}+11q^{11}+\cdots
176.4.a.f 176.a 1.a 11 10.38410.384 Q\Q None 22.4.a.a 00 77 19-19 14-14 - ++ SU(2)\mathrm{SU}(2) q+7q319q514q7+22q911q11+q+7q^{3}-19q^{5}-14q^{7}+22q^{9}-11q^{11}+\cdots
176.4.a.g 176.a 1.a 22 10.38410.384 Q(97)\Q(\sqrt{97}) None 44.4.a.b 00 9-9 1111 10-10 - ++ SU(2)\mathrm{SU}(2) q+(4β)q3+(6β)q5+(8+6β)q7+q+(-4-\beta )q^{3}+(6-\beta )q^{5}+(-8+6\beta )q^{7}+\cdots
176.4.a.h 176.a 1.a 22 10.38410.384 Q(5)\Q(\sqrt{5}) None 88.4.a.c 00 22 6-6 5656 ++ ++ SU(2)\mathrm{SU}(2) q+(1+β)q3+(3+4β)q5+(28+β)q7+q+(1+\beta )q^{3}+(-3+4\beta )q^{5}+(28+\beta )q^{7}+\cdots
176.4.a.i 176.a 1.a 22 10.38410.384 Q(3)\Q(\sqrt{3}) None 11.4.a.a 00 22 22 20-20 - - SU(2)\mathrm{SU}(2) q+(1+β)q3+(1+2β)q5+(10+β)q7+q+(1+\beta )q^{3}+(1+2\beta )q^{5}+(-10+\beta )q^{7}+\cdots
176.4.a.j 176.a 1.a 33 10.38410.384 3.3.11109.1 None 88.4.a.d 00 2-2 88 24-24 ++ ++ SU(2)\mathrm{SU}(2) q+(1+β1)q3+(3+β2)q5+(8+)q7+q+(-1+\beta _{1})q^{3}+(3+\beta _{2})q^{5}+(-8+\cdots)q^{7}+\cdots

Decomposition of S4old(Γ0(176))S_{4}^{\mathrm{old}}(\Gamma_0(176)) into lower level spaces