Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of M4(Γ0(176)).
|
Total |
New |
Old |
Modular forms
| 78 |
15 |
63 |
Cusp forms
| 66 |
15 |
51 |
Eisenstein series
| 12 |
0 |
12 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
2 | 11 | Fricke | | Total | | Cusp | | Eisenstein |
---|
All | New | Old | All | New | Old | All | New | Old |
---|
+ | + | + | | 21 | 5 | 16 | | 18 | 5 | 13 | | 3 | 0 | 3 |
+ | − | − | | 18 | 2 | 16 | | 15 | 2 | 13 | | 3 | 0 | 3 |
− | + | − | | 18 | 4 | 14 | | 15 | 4 | 11 | | 3 | 0 | 3 |
− | − | + | | 21 | 4 | 17 | | 18 | 4 | 14 | | 3 | 0 | 3 |
Plus space | + | | 42 | 9 | 33 | | 36 | 9 | 27 | | 6 | 0 | 6 |
Minus space | − | | 36 | 6 | 30 | | 30 | 6 | 24 | | 6 | 0 | 6 |
Decomposition of S4new(Γ0(176)) into newform subspaces
Decomposition of S4old(Γ0(176)) into lower level spaces