Properties

Label 176.6
Level 176
Weight 6
Dimension 2615
Nonzero newspaces 8
Sturm bound 11520
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 8 \)
Sturm bound: \(11520\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(176))\).

Total New Old
Modular forms 4940 2695 2245
Cusp forms 4660 2615 2045
Eisenstein series 280 80 200

Trace form

\( 2615 q - 16 q^{2} + 5 q^{3} + 28 q^{4} + 19 q^{5} - 244 q^{6} - 239 q^{7} - 508 q^{8} - 121 q^{9} + 852 q^{10} + 1255 q^{11} - 48 q^{12} - 141 q^{13} + 180 q^{14} - 7863 q^{15} + 1724 q^{16} + 1171 q^{17}+ \cdots - 348787 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(176))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
176.6.a \(\chi_{176}(1, \cdot)\) 176.6.a.a 1 1
176.6.a.b 1
176.6.a.c 1
176.6.a.d 1
176.6.a.e 1
176.6.a.f 2
176.6.a.g 2
176.6.a.h 2
176.6.a.i 3
176.6.a.j 3
176.6.a.k 4
176.6.a.l 4
176.6.c \(\chi_{176}(89, \cdot)\) None 0 1
176.6.e \(\chi_{176}(175, \cdot)\) 176.6.e.a 2 1
176.6.e.b 4
176.6.e.c 8
176.6.e.d 16
176.6.g \(\chi_{176}(87, \cdot)\) None 0 1
176.6.i \(\chi_{176}(43, \cdot)\) n/a 236 2
176.6.j \(\chi_{176}(45, \cdot)\) n/a 200 2
176.6.m \(\chi_{176}(49, \cdot)\) n/a 116 4
176.6.o \(\chi_{176}(7, \cdot)\) None 0 4
176.6.q \(\chi_{176}(63, \cdot)\) n/a 120 4
176.6.s \(\chi_{176}(9, \cdot)\) None 0 4
176.6.w \(\chi_{176}(5, \cdot)\) n/a 944 8
176.6.x \(\chi_{176}(19, \cdot)\) n/a 944 8

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(176))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(176)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 5}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(44))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(88))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(176))\)\(^{\oplus 1}\)