Properties

Label 176.6
Level 176
Weight 6
Dimension 2615
Nonzero newspaces 8
Sturm bound 11520
Trace bound 2

Downloads

Learn more

Defining parameters

Level: N N = 176=2411 176 = 2^{4} \cdot 11
Weight: k k = 6 6
Nonzero newspaces: 8 8
Sturm bound: 1152011520
Trace bound: 22

Dimensions

The following table gives the dimensions of various subspaces of M6(Γ1(176))M_{6}(\Gamma_1(176)).

Total New Old
Modular forms 4940 2695 2245
Cusp forms 4660 2615 2045
Eisenstein series 280 80 200

Trace form

2615q16q2+5q3+28q4+19q5244q6239q7508q8121q9+852q10+1255q1148q12141q13+180q147863q15+1724q16+1171q17+348787q99+O(q100) 2615 q - 16 q^{2} + 5 q^{3} + 28 q^{4} + 19 q^{5} - 244 q^{6} - 239 q^{7} - 508 q^{8} - 121 q^{9} + 852 q^{10} + 1255 q^{11} - 48 q^{12} - 141 q^{13} + 180 q^{14} - 7863 q^{15} + 1724 q^{16} + 1171 q^{17}+ \cdots - 348787 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S6new(Γ1(176))S_{6}^{\mathrm{new}}(\Gamma_1(176))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
176.6.a χ176(1,)\chi_{176}(1, \cdot) 176.6.a.a 1 1
176.6.a.b 1
176.6.a.c 1
176.6.a.d 1
176.6.a.e 1
176.6.a.f 2
176.6.a.g 2
176.6.a.h 2
176.6.a.i 3
176.6.a.j 3
176.6.a.k 4
176.6.a.l 4
176.6.c χ176(89,)\chi_{176}(89, \cdot) None 0 1
176.6.e χ176(175,)\chi_{176}(175, \cdot) 176.6.e.a 2 1
176.6.e.b 4
176.6.e.c 8
176.6.e.d 16
176.6.g χ176(87,)\chi_{176}(87, \cdot) None 0 1
176.6.i χ176(43,)\chi_{176}(43, \cdot) n/a 236 2
176.6.j χ176(45,)\chi_{176}(45, \cdot) n/a 200 2
176.6.m χ176(49,)\chi_{176}(49, \cdot) n/a 116 4
176.6.o χ176(7,)\chi_{176}(7, \cdot) None 0 4
176.6.q χ176(63,)\chi_{176}(63, \cdot) n/a 120 4
176.6.s χ176(9,)\chi_{176}(9, \cdot) None 0 4
176.6.w χ176(5,)\chi_{176}(5, \cdot) n/a 944 8
176.6.x χ176(19,)\chi_{176}(19, \cdot) n/a 944 8

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S6old(Γ1(176))S_{6}^{\mathrm{old}}(\Gamma_1(176)) into lower level spaces