Defining parameters
Level: | \( N \) | = | \( 176 = 2^{4} \cdot 11 \) |
Weight: | \( k \) | = | \( 6 \) |
Nonzero newspaces: | \( 8 \) | ||
Sturm bound: | \(11520\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(176))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 4940 | 2695 | 2245 |
Cusp forms | 4660 | 2615 | 2045 |
Eisenstein series | 280 | 80 | 200 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(176))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
176.6.a | \(\chi_{176}(1, \cdot)\) | 176.6.a.a | 1 | 1 |
176.6.a.b | 1 | |||
176.6.a.c | 1 | |||
176.6.a.d | 1 | |||
176.6.a.e | 1 | |||
176.6.a.f | 2 | |||
176.6.a.g | 2 | |||
176.6.a.h | 2 | |||
176.6.a.i | 3 | |||
176.6.a.j | 3 | |||
176.6.a.k | 4 | |||
176.6.a.l | 4 | |||
176.6.c | \(\chi_{176}(89, \cdot)\) | None | 0 | 1 |
176.6.e | \(\chi_{176}(175, \cdot)\) | 176.6.e.a | 2 | 1 |
176.6.e.b | 4 | |||
176.6.e.c | 8 | |||
176.6.e.d | 16 | |||
176.6.g | \(\chi_{176}(87, \cdot)\) | None | 0 | 1 |
176.6.i | \(\chi_{176}(43, \cdot)\) | n/a | 236 | 2 |
176.6.j | \(\chi_{176}(45, \cdot)\) | n/a | 200 | 2 |
176.6.m | \(\chi_{176}(49, \cdot)\) | n/a | 116 | 4 |
176.6.o | \(\chi_{176}(7, \cdot)\) | None | 0 | 4 |
176.6.q | \(\chi_{176}(63, \cdot)\) | n/a | 120 | 4 |
176.6.s | \(\chi_{176}(9, \cdot)\) | None | 0 | 4 |
176.6.w | \(\chi_{176}(5, \cdot)\) | n/a | 944 | 8 |
176.6.x | \(\chi_{176}(19, \cdot)\) | n/a | 944 | 8 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(176))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_1(176)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 5}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(44))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(88))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(176))\)\(^{\oplus 1}\)