Properties

Label 1764.4.ba
Level $1764$
Weight $4$
Character orbit 1764.ba
Rep. character $\chi_{1764}(491,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $1456$
Sturm bound $1344$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1764.ba (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 36 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(1344\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(1764, [\chi])\).

Total New Old
Modular forms 2048 1496 552
Cusp forms 1984 1456 528
Eisenstein series 64 40 24

Trace form

\( 1456 q + 3 q^{2} + q^{4} + 6 q^{5} + 9 q^{6} + 14 q^{9} + 20 q^{10} + 162 q^{12} + 2 q^{13} + q^{16} - 218 q^{18} - 228 q^{20} - 21 q^{22} - 385 q^{24} + 17202 q^{25} - 114 q^{29} + 312 q^{30} - 687 q^{32}+ \cdots + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(1764, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(1764, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(1764, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 2}\)