Properties

Label 1764.4.cj
Level $1764$
Weight $4$
Character orbit 1764.cj
Rep. character $\chi_{1764}(107,\cdot)$
Character field $\Q(\zeta_{42})$
Dimension $4032$
Sturm bound $1344$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1764.cj (of order \(42\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 588 \)
Character field: \(\Q(\zeta_{42})\)
Sturm bound: \(1344\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(1764, [\chi])\).

Total New Old
Modular forms 12192 4032 8160
Cusp forms 12000 4032 7968
Eisenstein series 192 0 192

Trace form

\( 4032 q + 144 q^{13} - 504 q^{22} - 8232 q^{25} - 648 q^{28} - 4032 q^{37} - 1500 q^{40} - 420 q^{46} - 1488 q^{49} + 708 q^{52} - 1008 q^{58} - 5400 q^{61} + 504 q^{64} - 6552 q^{70} - 1320 q^{73} + 5652 q^{76}+ \cdots + 2064 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(1764, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(1764, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(1764, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(588, [\chi])\)\(^{\oplus 2}\)