Properties

Label 1764.4.x
Level $1764$
Weight $4$
Character orbit 1764.x
Rep. character $\chi_{1764}(293,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $240$
Sturm bound $1344$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1764.x (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(1344\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(1764, [\chi])\).

Total New Old
Modular forms 2064 240 1824
Cusp forms 1968 240 1728
Eisenstein series 96 0 96

Trace form

\( 240 q - 92 q^{9} + 24 q^{11} - 300 q^{15} + 564 q^{23} - 3000 q^{25} + 84 q^{29} - 336 q^{37} + 68 q^{39} - 84 q^{43} + 2196 q^{51} + 808 q^{57} - 3576 q^{65} + 588 q^{67} + 264 q^{79} - 1356 q^{81} + 720 q^{85}+ \cdots + 1340 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(1764, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(1764, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(1764, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(441, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(882, [\chi])\)\(^{\oplus 2}\)