Properties

Label 1764.4.x
Level 17641764
Weight 44
Character orbit 1764.x
Rep. character χ1764(293,)\chi_{1764}(293,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 240240
Sturm bound 13441344

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1764=223272 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1764.x (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 63 63
Character field: Q(ζ6)\Q(\zeta_{6})
Sturm bound: 13441344

Dimensions

The following table gives the dimensions of various subspaces of M4(1764,[χ])M_{4}(1764, [\chi]).

Total New Old
Modular forms 2064 240 1824
Cusp forms 1968 240 1728
Eisenstein series 96 0 96

Trace form

240q92q9+24q11300q15+564q233000q25+84q29336q37+68q3984q43+2196q51+808q573576q65+588q67+264q791356q81+720q85++1340q99+O(q100) 240 q - 92 q^{9} + 24 q^{11} - 300 q^{15} + 564 q^{23} - 3000 q^{25} + 84 q^{29} - 336 q^{37} + 68 q^{39} - 84 q^{43} + 2196 q^{51} + 808 q^{57} - 3576 q^{65} + 588 q^{67} + 264 q^{79} - 1356 q^{81} + 720 q^{85}+ \cdots + 1340 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(1764,[χ])S_{4}^{\mathrm{new}}(1764, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S4old(1764,[χ])S_{4}^{\mathrm{old}}(1764, [\chi]) into lower level spaces

S4old(1764,[χ]) S_{4}^{\mathrm{old}}(1764, [\chi]) \simeq S4new(63,[χ])S_{4}^{\mathrm{new}}(63, [\chi])6^{\oplus 6}\oplusS4new(126,[χ])S_{4}^{\mathrm{new}}(126, [\chi])4^{\oplus 4}\oplusS4new(252,[χ])S_{4}^{\mathrm{new}}(252, [\chi])2^{\oplus 2}\oplusS4new(441,[χ])S_{4}^{\mathrm{new}}(441, [\chi])3^{\oplus 3}\oplusS4new(882,[χ])S_{4}^{\mathrm{new}}(882, [\chi])2^{\oplus 2}