Properties

Label 18.15.b
Level $18$
Weight $15$
Character orbit 18.b
Rep. character $\chi_{18}(17,\cdot)$
Character field $\Q$
Dimension $6$
Newform subspaces $2$
Sturm bound $45$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 18 = 2 \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 15 \)
Character orbit: \([\chi]\) \(=\) 18.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 3 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(45\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{15}(18, [\chi])\).

Total New Old
Modular forms 46 6 40
Cusp forms 38 6 32
Eisenstein series 8 0 8

Trace form

\( 6 q - 49152 q^{4} + 2137512 q^{7} + 3900672 q^{10} + 193537776 q^{13} + 402653184 q^{16} + 970963104 q^{19} - 4600747008 q^{22} - 39166275126 q^{25} - 17510498304 q^{28} - 27571769016 q^{31} - 90482026752 q^{34}+ \cdots - 210050877918048 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{15}^{\mathrm{new}}(18, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
18.15.b.a 18.b 3.b $2$ $22.379$ \(\Q(\sqrt{-2}) \) None 18.15.b.a \(0\) \(0\) \(0\) \(-522152\) $\mathrm{SU}(2)[C_{2}]$ \(q-2^{6}\beta q^{2}-2^{13}q^{4}+9075\beta q^{5}-261076q^{7}+\cdots\)
18.15.b.b 18.b 3.b $4$ $22.379$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 18.15.b.b \(0\) \(0\) \(0\) \(2659664\) $\mathrm{SU}(2)[C_{2}]$ \(q+2^{6}\beta _{1}q^{2}-2^{13}q^{4}+(-3081\beta _{1}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{15}^{\mathrm{old}}(18, [\chi])\) into lower level spaces

\( S_{15}^{\mathrm{old}}(18, [\chi]) \simeq \) \(S_{15}^{\mathrm{new}}(3, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{15}^{\mathrm{new}}(6, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{15}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 2}\)