Properties

Label 18.15.b
Level 1818
Weight 1515
Character orbit 18.b
Rep. character χ18(17,)\chi_{18}(17,\cdot)
Character field Q\Q
Dimension 66
Newform subspaces 22
Sturm bound 4545
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 18=232 18 = 2 \cdot 3^{2}
Weight: k k == 15 15
Character orbit: [χ][\chi] == 18.b (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 3 3
Character field: Q\Q
Newform subspaces: 2 2
Sturm bound: 4545
Trace bound: 11
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M15(18,[χ])M_{15}(18, [\chi]).

Total New Old
Modular forms 46 6 40
Cusp forms 38 6 32
Eisenstein series 8 0 8

Trace form

6q49152q4+2137512q7+3900672q10+193537776q13+402653184q16+970963104q194600747008q2239166275126q2517510498304q2827571769016q3190482026752q34+210050877918048q97+O(q100) 6 q - 49152 q^{4} + 2137512 q^{7} + 3900672 q^{10} + 193537776 q^{13} + 402653184 q^{16} + 970963104 q^{19} - 4600747008 q^{22} - 39166275126 q^{25} - 17510498304 q^{28} - 27571769016 q^{31} - 90482026752 q^{34}+ \cdots - 210050877918048 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S15new(18,[χ])S_{15}^{\mathrm{new}}(18, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
18.15.b.a 18.b 3.b 22 22.37922.379 Q(2)\Q(\sqrt{-2}) None 18.15.b.a 00 00 00 522152-522152 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q26βq2213q4+9075βq5261076q7+q-2^{6}\beta q^{2}-2^{13}q^{4}+9075\beta q^{5}-261076q^{7}+\cdots
18.15.b.b 18.b 3.b 44 22.37922.379 Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots) None 18.15.b.b 00 00 00 26596642659664 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+26β1q2213q4+(3081β1+)q5+q+2^{6}\beta _{1}q^{2}-2^{13}q^{4}+(-3081\beta _{1}+\cdots)q^{5}+\cdots

Decomposition of S15old(18,[χ])S_{15}^{\mathrm{old}}(18, [\chi]) into lower level spaces

S15old(18,[χ]) S_{15}^{\mathrm{old}}(18, [\chi]) \simeq S15new(3,[χ])S_{15}^{\mathrm{new}}(3, [\chi])4^{\oplus 4}\oplusS15new(6,[χ])S_{15}^{\mathrm{new}}(6, [\chi])2^{\oplus 2}\oplusS15new(9,[χ])S_{15}^{\mathrm{new}}(9, [\chi])2^{\oplus 2}