Defining parameters
Level: | \( N \) | \(=\) | \( 18 = 2 \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 15 \) |
Character orbit: | \([\chi]\) | \(=\) | 18.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 3 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(45\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{15}(18, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 46 | 6 | 40 |
Cusp forms | 38 | 6 | 32 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{15}^{\mathrm{new}}(18, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
18.15.b.a | $2$ | $22.379$ | \(\Q(\sqrt{-2}) \) | None | \(0\) | \(0\) | \(0\) | \(-522152\) | \(q-2^{6}\beta q^{2}-2^{13}q^{4}+9075\beta q^{5}-261076q^{7}+\cdots\) |
18.15.b.b | $4$ | $22.379$ | \(\mathbb{Q}[x]/(x^{4} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(2659664\) | \(q+2^{6}\beta _{1}q^{2}-2^{13}q^{4}+(-3081\beta _{1}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{15}^{\mathrm{old}}(18, [\chi])\) into lower level spaces
\( S_{15}^{\mathrm{old}}(18, [\chi]) \simeq \) \(S_{15}^{\mathrm{new}}(3, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{15}^{\mathrm{new}}(6, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{15}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 2}\)