Defining parameters
Level: | \( N \) | = | \( 18 = 2 \cdot 3^{2} \) |
Weight: | \( k \) | = | \( 16 \) |
Nonzero newspaces: | \( 2 \) | ||
Newform subspaces: | \( 8 \) | ||
Sturm bound: | \(288\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{16}(\Gamma_1(18))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 143 | 36 | 107 |
Cusp forms | 127 | 36 | 91 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{16}^{\mathrm{new}}(\Gamma_1(18))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{16}^{\mathrm{old}}(\Gamma_1(18))\) into lower level spaces
\( S_{16}^{\mathrm{old}}(\Gamma_1(18)) \cong \) \(S_{16}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 1}\)