Properties

Label 18.16
Level 18
Weight 16
Dimension 36
Nonzero newspaces 2
Newform subspaces 8
Sturm bound 288
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 18 = 2 \cdot 3^{2} \)
Weight: \( k \) = \( 16 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 8 \)
Sturm bound: \(288\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{16}(\Gamma_1(18))\).

Total New Old
Modular forms 143 36 107
Cusp forms 127 36 91
Eisenstein series 16 0 16

Trace form

\( 36 q + 128 q^{2} - 4065 q^{3} - 147456 q^{4} + 410202 q^{5} - 1319040 q^{6} + 5316804 q^{7} - 4194304 q^{8} + 22300923 q^{9} - 43425792 q^{10} + 31054251 q^{11} + 62619648 q^{12} - 171094572 q^{13} + 907519744 q^{14}+ \cdots - 48\!\cdots\!56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{16}^{\mathrm{new}}(\Gamma_1(18))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
18.16.a \(\chi_{18}(1, \cdot)\) 18.16.a.a 1 1
18.16.a.b 1
18.16.a.c 1
18.16.a.d 1
18.16.a.e 1
18.16.a.f 1
18.16.c \(\chi_{18}(7, \cdot)\) 18.16.c.a 14 2
18.16.c.b 16

Decomposition of \(S_{16}^{\mathrm{old}}(\Gamma_1(18))\) into lower level spaces

\( S_{16}^{\mathrm{old}}(\Gamma_1(18)) \cong \) \(S_{16}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 1}\)