Properties

Label 18.2
Level 18
Weight 2
Dimension 2
Nonzero newspaces 1
Newform subspaces 1
Sturm bound 36
Trace bound 0

Downloads

Learn more

Defining parameters

Level: N N = 18=232 18 = 2 \cdot 3^{2}
Weight: k k = 2 2
Nonzero newspaces: 1 1
Newform subspaces: 1 1
Sturm bound: 3636
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ1(18))M_{2}(\Gamma_1(18)).

Total New Old
Modular forms 17 2 15
Cusp forms 2 2 0
Eisenstein series 15 0 15

Trace form

2qq23q3q4+3q62q7+2q8+3q9+3q112q132q14q166q176q182q19+6q21+3q22+6q233q24+5q25++18q99+O(q100) 2 q - q^{2} - 3 q^{3} - q^{4} + 3 q^{6} - 2 q^{7} + 2 q^{8} + 3 q^{9} + 3 q^{11} - 2 q^{13} - 2 q^{14} - q^{16} - 6 q^{17} - 6 q^{18} - 2 q^{19} + 6 q^{21} + 3 q^{22} + 6 q^{23} - 3 q^{24} + 5 q^{25}+ \cdots + 18 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ1(18))S_{2}^{\mathrm{new}}(\Gamma_1(18))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
18.2.a χ18(1,)\chi_{18}(1, \cdot) None 0 1
18.2.c χ18(7,)\chi_{18}(7, \cdot) 18.2.c.a 2 2