Properties

Label 18.2
Level 18
Weight 2
Dimension 2
Nonzero newspaces 1
Newform subspaces 1
Sturm bound 36
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 18 = 2 \cdot 3^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 1 \)
Sturm bound: \(36\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(18))\).

Total New Old
Modular forms 17 2 15
Cusp forms 2 2 0
Eisenstein series 15 0 15

Trace form

\( 2 q - q^{2} - 3 q^{3} - q^{4} + 3 q^{6} - 2 q^{7} + 2 q^{8} + 3 q^{9} + 3 q^{11} - 2 q^{13} - 2 q^{14} - q^{16} - 6 q^{17} - 6 q^{18} - 2 q^{19} + 6 q^{21} + 3 q^{22} + 6 q^{23} - 3 q^{24} + 5 q^{25}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
18.2.a \(\chi_{18}(1, \cdot)\) None 0 1
18.2.c \(\chi_{18}(7, \cdot)\) 18.2.c.a 2 2