Defining parameters
Level: | \( N \) | = | \( 18 = 2 \cdot 3^{2} \) |
Weight: | \( k \) | = | \( 21 \) |
Nonzero newspaces: | \( 2 \) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(378\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{21}(\Gamma_1(18))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 188 | 48 | 140 |
Cusp forms | 172 | 48 | 124 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{21}^{\mathrm{new}}(\Gamma_1(18))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
18.21.b | \(\chi_{18}(17, \cdot)\) | 18.21.b.a | 4 | 1 |
18.21.b.b | 4 | |||
18.21.d | \(\chi_{18}(5, \cdot)\) | 18.21.d.a | 40 | 2 |
Decomposition of \(S_{21}^{\mathrm{old}}(\Gamma_1(18))\) into lower level spaces
\( S_{21}^{\mathrm{old}}(\Gamma_1(18)) \cong \) \(S_{21}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 1}\)