Properties

Label 18.21
Level 18
Weight 21
Dimension 48
Nonzero newspaces 2
Newform subspaces 3
Sturm bound 378
Trace bound 1

Downloads

Learn more

Defining parameters

Level: N N = 18=232 18 = 2 \cdot 3^{2}
Weight: k k = 21 21
Nonzero newspaces: 2 2
Newform subspaces: 3 3
Sturm bound: 378378
Trace bound: 11

Dimensions

The following table gives the dimensions of various subspaces of M21(Γ1(18))M_{21}(\Gamma_1(18)).

Total New Old
Modular forms 188 48 140
Cusp forms 172 48 124
Eisenstein series 16 0 16

Trace form

48q18846q3+6291456q4+29763918q5+102690816q6+732904026q7+967310598q913746831360q1035793208728q11+26559381504q12218681439210q13+187564400640q14++52 ⁣ ⁣22q99+O(q100) 48 q - 18846 q^{3} + 6291456 q^{4} + 29763918 q^{5} + 102690816 q^{6} + 732904026 q^{7} + 967310598 q^{9} - 13746831360 q^{10} - 35793208728 q^{11} + 26559381504 q^{12} - 218681439210 q^{13} + 187564400640 q^{14}+ \cdots + 52\!\cdots\!22 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S21new(Γ1(18))S_{21}^{\mathrm{new}}(\Gamma_1(18))

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
18.21.b χ18(17,)\chi_{18}(17, \cdot) 18.21.b.a 4 1
18.21.b.b 4
18.21.d χ18(5,)\chi_{18}(5, \cdot) 18.21.d.a 40 2

Decomposition of S21old(Γ1(18))S_{21}^{\mathrm{old}}(\Gamma_1(18)) into lower level spaces

S21old(Γ1(18)) S_{21}^{\mathrm{old}}(\Gamma_1(18)) \cong S21new(Γ1(1))S_{21}^{\mathrm{new}}(\Gamma_1(1))6^{\oplus 6}\oplusS21new(Γ1(2))S_{21}^{\mathrm{new}}(\Gamma_1(2))3^{\oplus 3}\oplusS21new(Γ1(3))S_{21}^{\mathrm{new}}(\Gamma_1(3))4^{\oplus 4}\oplusS21new(Γ1(6))S_{21}^{\mathrm{new}}(\Gamma_1(6))2^{\oplus 2}\oplusS21new(Γ1(9))S_{21}^{\mathrm{new}}(\Gamma_1(9))2^{\oplus 2}