Properties

Label 18.21
Level 18
Weight 21
Dimension 48
Nonzero newspaces 2
Newform subspaces 3
Sturm bound 378
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 18 = 2 \cdot 3^{2} \)
Weight: \( k \) = \( 21 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 3 \)
Sturm bound: \(378\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{21}(\Gamma_1(18))\).

Total New Old
Modular forms 188 48 140
Cusp forms 172 48 124
Eisenstein series 16 0 16

Trace form

\( 48 q - 18846 q^{3} + 6291456 q^{4} + 29763918 q^{5} + 102690816 q^{6} + 732904026 q^{7} + 967310598 q^{9} - 13746831360 q^{10} - 35793208728 q^{11} + 26559381504 q^{12} - 218681439210 q^{13} + 187564400640 q^{14}+ \cdots + 52\!\cdots\!22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{21}^{\mathrm{new}}(\Gamma_1(18))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
18.21.b \(\chi_{18}(17, \cdot)\) 18.21.b.a 4 1
18.21.b.b 4
18.21.d \(\chi_{18}(5, \cdot)\) 18.21.d.a 40 2

Decomposition of \(S_{21}^{\mathrm{old}}(\Gamma_1(18))\) into lower level spaces

\( S_{21}^{\mathrm{old}}(\Gamma_1(18)) \cong \) \(S_{21}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 1}\)