Properties

Label 180.2
Level 180
Weight 2
Dimension 337
Nonzero newspaces 12
Newform subspaces 21
Sturm bound 3456
Trace bound 4

Downloads

Learn more

Defining parameters

Level: N N = 180=22325 180 = 2^{2} \cdot 3^{2} \cdot 5
Weight: k k = 2 2
Nonzero newspaces: 12 12
Newform subspaces: 21 21
Sturm bound: 34563456
Trace bound: 44

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ1(180))M_{2}(\Gamma_1(180)).

Total New Old
Modular forms 1024 393 631
Cusp forms 705 337 368
Eisenstein series 319 56 263

Trace form

337q+6q44q510q6+8q7+12q96q10+22q1120q12+22q1336q14+3q1530q168q1752q18+12q1958q2026q2142q22++94q99+O(q100) 337 q + 6 q^{4} - 4 q^{5} - 10 q^{6} + 8 q^{7} + 12 q^{9} - 6 q^{10} + 22 q^{11} - 20 q^{12} + 22 q^{13} - 36 q^{14} + 3 q^{15} - 30 q^{16} - 8 q^{17} - 52 q^{18} + 12 q^{19} - 58 q^{20} - 26 q^{21} - 42 q^{22}+ \cdots + 94 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ1(180))S_{2}^{\mathrm{new}}(\Gamma_1(180))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
180.2.a χ180(1,)\chi_{180}(1, \cdot) 180.2.a.a 1 1
180.2.d χ180(109,)\chi_{180}(109, \cdot) 180.2.d.a 2 1
180.2.e χ180(71,)\chi_{180}(71, \cdot) 180.2.e.a 8 1
180.2.h χ180(179,)\chi_{180}(179, \cdot) 180.2.h.a 4 1
180.2.h.b 8
180.2.i χ180(61,)\chi_{180}(61, \cdot) 180.2.i.a 2 2
180.2.i.b 6
180.2.j χ180(17,)\chi_{180}(17, \cdot) 180.2.j.a 4 2
180.2.k χ180(127,)\chi_{180}(127, \cdot) 180.2.k.a 2 2
180.2.k.b 2
180.2.k.c 2
180.2.k.d 8
180.2.k.e 12
180.2.n χ180(59,)\chi_{180}(59, \cdot) 180.2.n.a 4 2
180.2.n.b 4
180.2.n.c 8
180.2.n.d 48
180.2.q χ180(11,)\chi_{180}(11, \cdot) 180.2.q.a 48 2
180.2.r χ180(49,)\chi_{180}(49, \cdot) 180.2.r.a 12 2
180.2.w χ180(77,)\chi_{180}(77, \cdot) 180.2.w.a 24 4
180.2.x χ180(7,)\chi_{180}(7, \cdot) 180.2.x.a 128 4

Decomposition of S2old(Γ1(180))S_{2}^{\mathrm{old}}(\Gamma_1(180)) into lower level spaces

S2old(Γ1(180)) S_{2}^{\mathrm{old}}(\Gamma_1(180)) \cong S2new(Γ1(1))S_{2}^{\mathrm{new}}(\Gamma_1(1))18^{\oplus 18}\oplusS2new(Γ1(2))S_{2}^{\mathrm{new}}(\Gamma_1(2))12^{\oplus 12}\oplusS2new(Γ1(3))S_{2}^{\mathrm{new}}(\Gamma_1(3))12^{\oplus 12}\oplusS2new(Γ1(4))S_{2}^{\mathrm{new}}(\Gamma_1(4))6^{\oplus 6}\oplusS2new(Γ1(5))S_{2}^{\mathrm{new}}(\Gamma_1(5))9^{\oplus 9}\oplusS2new(Γ1(6))S_{2}^{\mathrm{new}}(\Gamma_1(6))8^{\oplus 8}\oplusS2new(Γ1(9))S_{2}^{\mathrm{new}}(\Gamma_1(9))6^{\oplus 6}\oplusS2new(Γ1(10))S_{2}^{\mathrm{new}}(\Gamma_1(10))6^{\oplus 6}\oplusS2new(Γ1(12))S_{2}^{\mathrm{new}}(\Gamma_1(12))4^{\oplus 4}\oplusS2new(Γ1(15))S_{2}^{\mathrm{new}}(\Gamma_1(15))6^{\oplus 6}\oplusS2new(Γ1(18))S_{2}^{\mathrm{new}}(\Gamma_1(18))4^{\oplus 4}\oplusS2new(Γ1(20))S_{2}^{\mathrm{new}}(\Gamma_1(20))3^{\oplus 3}\oplusS2new(Γ1(30))S_{2}^{\mathrm{new}}(\Gamma_1(30))4^{\oplus 4}\oplusS2new(Γ1(36))S_{2}^{\mathrm{new}}(\Gamma_1(36))2^{\oplus 2}\oplusS2new(Γ1(45))S_{2}^{\mathrm{new}}(\Gamma_1(45))3^{\oplus 3}\oplusS2new(Γ1(60))S_{2}^{\mathrm{new}}(\Gamma_1(60))2^{\oplus 2}\oplusS2new(Γ1(90))S_{2}^{\mathrm{new}}(\Gamma_1(90))2^{\oplus 2}