Properties

Label 180.2
Level 180
Weight 2
Dimension 337
Nonzero newspaces 12
Newform subspaces 21
Sturm bound 3456
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 180 = 2^{2} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 12 \)
Newform subspaces: \( 21 \)
Sturm bound: \(3456\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(180))\).

Total New Old
Modular forms 1024 393 631
Cusp forms 705 337 368
Eisenstein series 319 56 263

Trace form

\( 337 q + 6 q^{4} - 4 q^{5} - 10 q^{6} + 8 q^{7} + 12 q^{9} - 6 q^{10} + 22 q^{11} - 20 q^{12} + 22 q^{13} - 36 q^{14} + 3 q^{15} - 30 q^{16} - 8 q^{17} - 52 q^{18} + 12 q^{19} - 58 q^{20} - 26 q^{21} - 42 q^{22}+ \cdots + 94 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(180))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
180.2.a \(\chi_{180}(1, \cdot)\) 180.2.a.a 1 1
180.2.d \(\chi_{180}(109, \cdot)\) 180.2.d.a 2 1
180.2.e \(\chi_{180}(71, \cdot)\) 180.2.e.a 8 1
180.2.h \(\chi_{180}(179, \cdot)\) 180.2.h.a 4 1
180.2.h.b 8
180.2.i \(\chi_{180}(61, \cdot)\) 180.2.i.a 2 2
180.2.i.b 6
180.2.j \(\chi_{180}(17, \cdot)\) 180.2.j.a 4 2
180.2.k \(\chi_{180}(127, \cdot)\) 180.2.k.a 2 2
180.2.k.b 2
180.2.k.c 2
180.2.k.d 8
180.2.k.e 12
180.2.n \(\chi_{180}(59, \cdot)\) 180.2.n.a 4 2
180.2.n.b 4
180.2.n.c 8
180.2.n.d 48
180.2.q \(\chi_{180}(11, \cdot)\) 180.2.q.a 48 2
180.2.r \(\chi_{180}(49, \cdot)\) 180.2.r.a 12 2
180.2.w \(\chi_{180}(77, \cdot)\) 180.2.w.a 24 4
180.2.x \(\chi_{180}(7, \cdot)\) 180.2.x.a 128 4

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(180))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(180)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(60))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(90))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(180))\)\(^{\oplus 1}\)