Properties

Label 1800.2.b
Level $1800$
Weight $2$
Character orbit 1800.b
Rep. character $\chi_{1800}(251,\cdot)$
Character field $\Q$
Dimension $76$
Newform subspaces $9$
Sturm bound $720$
Trace bound $22$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1800.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 24 \)
Character field: \(\Q\)
Newform subspaces: \( 9 \)
Sturm bound: \(720\)
Trace bound: \(22\)
Distinguishing \(T_p\): \(7\), \(23\), \(43\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1800, [\chi])\).

Total New Old
Modular forms 384 76 308
Cusp forms 336 76 260
Eisenstein series 48 0 48

Trace form

\( 76 q - 4 q^{4} + 16 q^{19} + 24 q^{22} - 8 q^{28} + 28 q^{34} - 32 q^{43} - 92 q^{49} + 32 q^{52} + 28 q^{58} + 56 q^{64} - 16 q^{67} - 16 q^{73} + 24 q^{76} - 84 q^{82} + 48 q^{91} + 32 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1800, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1800.2.b.a 1800.b 24.f $2$ $14.373$ \(\Q(\sqrt{-2}) \) None 360.2.b.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{2}-2q^{4}+3\beta q^{7}-2\beta q^{8}+\beta q^{11}+\cdots\)
1800.2.b.b 1800.b 24.f $2$ $14.373$ \(\Q(\sqrt{-2}) \) None 360.2.b.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta q^{2}-2q^{4}+3\beta q^{7}+2\beta q^{8}-\beta q^{11}+\cdots\)
1800.2.b.c 1800.b 24.f $4$ $14.373$ \(\Q(\sqrt{-2}, \sqrt{-3})\) None 72.2.f.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{2}+(1+\beta _{3})q^{4}+2\beta _{3}q^{7}-2\beta _{2}q^{8}+\cdots\)
1800.2.b.d 1800.b 24.f $6$ $14.373$ 6.0.2580992.1 None 360.2.b.c \(-2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{2}+(\beta _{2}-\beta _{3})q^{4}+\beta _{3}q^{7}+(-\beta _{2}+\cdots)q^{8}+\cdots\)
1800.2.b.e 1800.b 24.f $6$ $14.373$ 6.0.2580992.1 None 360.2.b.c \(2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(\beta _{2}-\beta _{3})q^{4}+\beta _{3}q^{7}+(\beta _{2}+\cdots)q^{8}+\cdots\)
1800.2.b.f 1800.b 24.f $8$ $14.373$ 8.0.40960000.1 \(\Q(\sqrt{-10}) \) 360.2.m.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta _{2}q^{2}+2q^{4}-\beta _{5}q^{7}+2\beta _{2}q^{8}+\cdots\)
1800.2.b.g 1800.b 24.f $16$ $14.373$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 360.2.m.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{3}q^{2}+(-1-\beta _{5})q^{4}+(\beta _{2}+\beta _{12}+\cdots)q^{7}+\cdots\)
1800.2.b.h 1800.b 24.f $16$ $14.373$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 1800.2.b.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{6}q^{2}+\beta _{5}q^{4}-\beta _{15}q^{7}+\beta _{13}q^{8}+\cdots\)
1800.2.b.i 1800.b 24.f $16$ $14.373$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 1800.2.b.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{9}q^{2}+\beta _{2}q^{4}+\beta _{12}q^{7}+\beta _{15}q^{8}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1800, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1800, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(360, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(600, [\chi])\)\(^{\oplus 2}\)