Properties

Label 1815.1
Level 1815
Weight 1
Dimension 66
Nonzero newspaces 3
Newform subspaces 18
Sturm bound 232320
Trace bound 1

Downloads

Learn more

Defining parameters

Level: N N = 1815=35112 1815 = 3 \cdot 5 \cdot 11^{2}
Weight: k k = 1 1
Nonzero newspaces: 3 3
Newform subspaces: 18 18
Sturm bound: 232320232320
Trace bound: 11

Dimensions

The following table gives the dimensions of various subspaces of M1(Γ1(1815))M_{1}(\Gamma_1(1815)).

Total New Old
Modular forms 2676 908 1768
Cusp forms 116 66 50
Eisenstein series 2560 842 1718

The following table gives the dimensions of subspaces with specified projective image type.

DnD_n A4A_4 S4S_4 A5A_5
Dimension 66 0 0 0

Trace form

66q+2q3+8q12+2q15+4q16+4q25+2q2740q344q372q482q6016q672q754q81+4q97+O(q100) 66 q + 2 q^{3} + 8 q^{12} + 2 q^{15} + 4 q^{16} + 4 q^{25} + 2 q^{27} - 40 q^{34} - 4 q^{37} - 2 q^{48} - 2 q^{60} - 16 q^{67} - 2 q^{75} - 4 q^{81} + 4 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S1new(Γ1(1815))S_{1}^{\mathrm{new}}(\Gamma_1(1815))

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
1815.1.b χ1815(241,)\chi_{1815}(241, \cdot) None 0 1
1815.1.e χ1815(1211,)\chi_{1815}(1211, \cdot) None 0 1
1815.1.g χ1815(1574,)\chi_{1815}(1574, \cdot) 1815.1.g.a 1 1
1815.1.g.b 1
1815.1.g.c 1
1815.1.g.d 1
1815.1.g.e 1
1815.1.g.f 1
1815.1.g.g 2
1815.1.g.h 2
1815.1.h χ1815(604,)\chi_{1815}(604, \cdot) None 0 1
1815.1.i χ1815(727,)\chi_{1815}(727, \cdot) None 0 2
1815.1.l χ1815(362,)\chi_{1815}(362, \cdot) None 0 2
1815.1.n χ1815(94,)\chi_{1815}(94, \cdot) None 0 4
1815.1.o χ1815(269,)\chi_{1815}(269, \cdot) 1815.1.o.a 4 4
1815.1.o.b 4
1815.1.o.c 4
1815.1.o.d 4
1815.1.o.e 4
1815.1.o.f 4
1815.1.o.g 8
1815.1.o.h 8
1815.1.q χ1815(251,)\chi_{1815}(251, \cdot) None 0 4
1815.1.t χ1815(481,)\chi_{1815}(481, \cdot) None 0 4
1815.1.v χ1815(233,)\chi_{1815}(233, \cdot) 1815.1.v.a 8 8
1815.1.v.b 8
1815.1.y χ1815(148,)\chi_{1815}(148, \cdot) None 0 8
1815.1.z χ1815(109,)\chi_{1815}(109, \cdot) None 0 10
1815.1.ba χ1815(89,)\chi_{1815}(89, \cdot) None 0 10
1815.1.bc χ1815(56,)\chi_{1815}(56, \cdot) None 0 10
1815.1.bf χ1815(76,)\chi_{1815}(76, \cdot) None 0 10
1815.1.bg χ1815(32,)\chi_{1815}(32, \cdot) None 0 20
1815.1.bj χ1815(67,)\chi_{1815}(67, \cdot) None 0 20
1815.1.bl χ1815(46,)\chi_{1815}(46, \cdot) None 0 40
1815.1.bo χ1815(26,)\chi_{1815}(26, \cdot) None 0 40
1815.1.bq χ1815(14,)\chi_{1815}(14, \cdot) None 0 40
1815.1.br χ1815(19,)\chi_{1815}(19, \cdot) None 0 40
1815.1.bs χ1815(37,)\chi_{1815}(37, \cdot) None 0 80
1815.1.bv χ1815(2,)\chi_{1815}(2, \cdot) None 0 80

Decomposition of S1old(Γ1(1815))S_{1}^{\mathrm{old}}(\Gamma_1(1815)) into lower level spaces