Defining parameters
Level: | \( N \) | \(=\) | \( 182 = 2 \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 182.g (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(56\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(182, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 64 | 12 | 52 |
Cusp forms | 48 | 12 | 36 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(182, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
182.2.g.a | $2$ | $1.453$ | \(\Q(\sqrt{-3}) \) | None | \(1\) | \(-3\) | \(-6\) | \(-1\) | \(q+(1-\zeta_{6})q^{2}+(-3+3\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\) |
182.2.g.b | $2$ | $1.453$ | \(\Q(\sqrt{-3}) \) | None | \(1\) | \(-1\) | \(6\) | \(-1\) | \(q+(1-\zeta_{6})q^{2}+(-1+\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\) |
182.2.g.c | $2$ | $1.453$ | \(\Q(\sqrt{-3}) \) | None | \(1\) | \(2\) | \(-6\) | \(-1\) | \(q+(1-\zeta_{6})q^{2}+(2-2\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\) |
182.2.g.d | $2$ | $1.453$ | \(\Q(\sqrt{-3}) \) | None | \(1\) | \(2\) | \(2\) | \(1\) | \(q+(1-\zeta_{6})q^{2}+(2-2\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\) |
182.2.g.e | $4$ | $1.453$ | \(\Q(\zeta_{12})\) | None | \(-2\) | \(0\) | \(8\) | \(2\) | \(q-\beta_1 q^{2}+\beta_{2} q^{3}+(\beta_1-1)q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(182, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(182, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 2}\)