Properties

Label 182.2.g
Level 182182
Weight 22
Character orbit 182.g
Rep. character χ182(29,)\chi_{182}(29,\cdot)
Character field Q(ζ3)\Q(\zeta_{3})
Dimension 1212
Newform subspaces 55
Sturm bound 5656
Trace bound 55

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 182=2713 182 = 2 \cdot 7 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 182.g (of order 33 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 13 13
Character field: Q(ζ3)\Q(\zeta_{3})
Newform subspaces: 5 5
Sturm bound: 5656
Trace bound: 55
Distinguishing TpT_p: 33, 55

Dimensions

The following table gives the dimensions of various subspaces of M2(182,[χ])M_{2}(182, [\chi]).

Total New Old
Modular forms 64 12 52
Cusp forms 48 12 36
Eisenstein series 16 0 16

Trace form

12q+2q26q4+4q54q86q96q10+4q116q138q144q156q166q1712q18+16q192q20+8q21+4q228q23+24q25++40q99+O(q100) 12 q + 2 q^{2} - 6 q^{4} + 4 q^{5} - 4 q^{8} - 6 q^{9} - 6 q^{10} + 4 q^{11} - 6 q^{13} - 8 q^{14} - 4 q^{15} - 6 q^{16} - 6 q^{17} - 12 q^{18} + 16 q^{19} - 2 q^{20} + 8 q^{21} + 4 q^{22} - 8 q^{23} + 24 q^{25}+ \cdots + 40 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(182,[χ])S_{2}^{\mathrm{new}}(182, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
182.2.g.a 182.g 13.c 22 1.4531.453 Q(3)\Q(\sqrt{-3}) None 182.2.g.a 11 3-3 6-6 1-1 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1ζ6)q2+(3+3ζ6)q3ζ6q4+q+(1-\zeta_{6})q^{2}+(-3+3\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots
182.2.g.b 182.g 13.c 22 1.4531.453 Q(3)\Q(\sqrt{-3}) None 182.2.g.b 11 1-1 66 1-1 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1ζ6)q2+(1+ζ6)q3ζ6q4+q+(1-\zeta_{6})q^{2}+(-1+\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots
182.2.g.c 182.g 13.c 22 1.4531.453 Q(3)\Q(\sqrt{-3}) None 182.2.g.c 11 22 6-6 1-1 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1ζ6)q2+(22ζ6)q3ζ6q4+q+(1-\zeta_{6})q^{2}+(2-2\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots
182.2.g.d 182.g 13.c 22 1.4531.453 Q(3)\Q(\sqrt{-3}) None 182.2.g.d 11 22 22 11 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1ζ6)q2+(22ζ6)q3ζ6q4+q+(1-\zeta_{6})q^{2}+(2-2\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots
182.2.g.e 182.g 13.c 44 1.4531.453 Q(ζ12)\Q(\zeta_{12}) None 182.2.g.e 2-2 00 88 22 SU(2)[C3]\mathrm{SU}(2)[C_{3}] qβ1q2+β2q3+(β11)q4+q-\beta_1 q^{2}+\beta_{2} q^{3}+(\beta_1-1)q^{4}+\cdots

Decomposition of S2old(182,[χ])S_{2}^{\mathrm{old}}(182, [\chi]) into lower level spaces

S2old(182,[χ]) S_{2}^{\mathrm{old}}(182, [\chi]) \simeq S2new(26,[χ])S_{2}^{\mathrm{new}}(26, [\chi])2^{\oplus 2}\oplusS2new(91,[χ])S_{2}^{\mathrm{new}}(91, [\chi])2^{\oplus 2}