Properties

Label 182.2.g
Level $182$
Weight $2$
Character orbit 182.g
Rep. character $\chi_{182}(29,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $12$
Newform subspaces $5$
Sturm bound $56$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 182 = 2 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 182.g (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 5 \)
Sturm bound: \(56\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(3\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(182, [\chi])\).

Total New Old
Modular forms 64 12 52
Cusp forms 48 12 36
Eisenstein series 16 0 16

Trace form

\( 12 q + 2 q^{2} - 6 q^{4} + 4 q^{5} - 4 q^{8} - 6 q^{9} - 6 q^{10} + 4 q^{11} - 6 q^{13} - 8 q^{14} - 4 q^{15} - 6 q^{16} - 6 q^{17} - 12 q^{18} + 16 q^{19} - 2 q^{20} + 8 q^{21} + 4 q^{22} - 8 q^{23} + 24 q^{25}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(182, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
182.2.g.a 182.g 13.c $2$ $1.453$ \(\Q(\sqrt{-3}) \) None 182.2.g.a \(1\) \(-3\) \(-6\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+(-3+3\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
182.2.g.b 182.g 13.c $2$ $1.453$ \(\Q(\sqrt{-3}) \) None 182.2.g.b \(1\) \(-1\) \(6\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+(-1+\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
182.2.g.c 182.g 13.c $2$ $1.453$ \(\Q(\sqrt{-3}) \) None 182.2.g.c \(1\) \(2\) \(-6\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+(2-2\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
182.2.g.d 182.g 13.c $2$ $1.453$ \(\Q(\sqrt{-3}) \) None 182.2.g.d \(1\) \(2\) \(2\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+(2-2\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
182.2.g.e 182.g 13.c $4$ $1.453$ \(\Q(\zeta_{12})\) None 182.2.g.e \(-2\) \(0\) \(8\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta_1 q^{2}+\beta_{2} q^{3}+(\beta_1-1)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(182, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(182, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 2}\)