Defining parameters
Level: | \( N \) | \(=\) | \( 182 = 2 \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 182.v (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 91 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(56\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(182, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 64 | 20 | 44 |
Cusp forms | 48 | 20 | 28 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(182, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
182.2.v.a | $20$ | $1.453$ | \(\mathbb{Q}[x]/(x^{20} + \cdots)\) | None | \(0\) | \(-4\) | \(0\) | \(-2\) | \(q+\beta _{6}q^{2}-\beta _{3}q^{3}+\beta _{4}q^{4}+(-\beta _{8}+\beta _{16}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(182, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(182, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 2}\)