Properties

Label 182.2.v
Level $182$
Weight $2$
Character orbit 182.v
Rep. character $\chi_{182}(121,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $20$
Newform subspaces $1$
Sturm bound $56$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 182 = 2 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 182.v (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 91 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(56\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(182, [\chi])\).

Total New Old
Modular forms 64 20 44
Cusp forms 48 20 28
Eisenstein series 16 0 16

Trace form

\( 20 q - 4 q^{3} + 10 q^{4} - 2 q^{7} + 32 q^{9} + 8 q^{10} - 2 q^{12} + 6 q^{13} - 4 q^{14} - 12 q^{15} - 10 q^{16} - 10 q^{17} - 24 q^{18} + 14 q^{21} + 2 q^{22} + 18 q^{25} - 6 q^{26} - 28 q^{27} - 4 q^{28}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(182, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
182.2.v.a 182.v 91.u $20$ $1.453$ \(\mathbb{Q}[x]/(x^{20} + \cdots)\) None 182.2.o.a \(0\) \(-4\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{6}q^{2}-\beta _{3}q^{3}+\beta _{4}q^{4}+(-\beta _{8}+\beta _{16}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(182, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(182, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 2}\)