Properties

Label 183.2.a
Level 183183
Weight 22
Character orbit 183.a
Rep. character χ183(1,)\chi_{183}(1,\cdot)
Character field Q\Q
Dimension 1111
Newform subspaces 33
Sturm bound 4141
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 183=361 183 = 3 \cdot 61
Weight: k k == 2 2
Character orbit: [χ][\chi] == 183.a (trivial)
Character field: Q\Q
Newform subspaces: 3 3
Sturm bound: 4141
Trace bound: 11
Distinguishing TpT_p: 22

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ0(183))M_{2}(\Gamma_0(183)).

Total New Old
Modular forms 22 11 11
Cusp forms 19 11 8
Eisenstein series 3 0 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

336161FrickeDim
++++++22
++--33
-++-66
Plus space++22
Minus space-99

Trace form

11qq2+q3+13q4+6q5+q69q8+11q92q108q11+7q12+6q1316q142q15+13q16+10q17q18+4q196q20+4q21+8q99+O(q100) 11 q - q^{2} + q^{3} + 13 q^{4} + 6 q^{5} + q^{6} - 9 q^{8} + 11 q^{9} - 2 q^{10} - 8 q^{11} + 7 q^{12} + 6 q^{13} - 16 q^{14} - 2 q^{15} + 13 q^{16} + 10 q^{17} - q^{18} + 4 q^{19} - 6 q^{20} + 4 q^{21}+ \cdots - 8 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ0(183))S_{2}^{\mathrm{new}}(\Gamma_0(183)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 3 61
183.2.a.a 183.a 1.a 22 1.4611.461 Q(2)\Q(\sqrt{2}) None 183.2.a.a 2-2 2-2 2-2 2-2 ++ ++ SU(2)\mathrm{SU}(2) q+(1+β)q2q3+(12β)q4q5+q+(-1+\beta )q^{2}-q^{3}+(1-2\beta )q^{4}-q^{5}+\cdots
183.2.a.b 183.a 1.a 33 1.4611.461 3.3.148.1 None 183.2.a.b 11 3-3 66 00 ++ - SU(2)\mathrm{SU}(2) q+β1q2q3+(β1+β2)q4+2q5+q+\beta _{1}q^{2}-q^{3}+(\beta _{1}+\beta _{2})q^{4}+2q^{5}+\cdots
183.2.a.c 183.a 1.a 66 1.4611.461 6.6.91407488.1 None 183.2.a.c 00 66 22 22 - ++ SU(2)\mathrm{SU}(2) qβ1q2+q3+(2+β2)q4+(1+β3+)q5+q-\beta _{1}q^{2}+q^{3}+(2+\beta _{2})q^{4}+(1+\beta _{3}+\cdots)q^{5}+\cdots

Decomposition of S2old(Γ0(183))S_{2}^{\mathrm{old}}(\Gamma_0(183)) into lower level spaces

S2old(Γ0(183)) S_{2}^{\mathrm{old}}(\Gamma_0(183)) \simeq S2new(Γ0(61))S_{2}^{\mathrm{new}}(\Gamma_0(61))2^{\oplus 2}