Properties

Label 185.2.bc
Level $185$
Weight $2$
Character orbit 185.bc
Rep. character $\chi_{185}(2,\cdot)$
Character field $\Q(\zeta_{36})$
Dimension $204$
Newform subspaces $1$
Sturm bound $38$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 185 = 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 185.bc (of order \(36\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 185 \)
Character field: \(\Q(\zeta_{36})\)
Newform subspaces: \( 1 \)
Sturm bound: \(38\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(185, [\chi])\).

Total New Old
Modular forms 252 252 0
Cusp forms 204 204 0
Eisenstein series 48 48 0

Trace form

\( 204 q - 12 q^{2} - 18 q^{3} - 12 q^{5} - 24 q^{6} - 12 q^{7} - 18 q^{8} - 6 q^{10} - 36 q^{11} - 12 q^{12} - 12 q^{13} + 24 q^{14} - 12 q^{15} - 24 q^{16} + 12 q^{17} + 66 q^{18} - 108 q^{20} - 24 q^{21}+ \cdots - 192 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(185, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
185.2.bc.a 185.bc 185.ac $204$ $1.477$ None 185.2.z.a \(-12\) \(-18\) \(-12\) \(-12\) $\mathrm{SU}(2)[C_{36}]$