Properties

Label 1859.4
Level 1859
Weight 4
Dimension 412000
Nonzero newspaces 24
Sturm bound 1135680
Trace bound 3

Downloads

Learn more

Defining parameters

Level: N N = 1859=11132 1859 = 11 \cdot 13^{2}
Weight: k k = 4 4
Nonzero newspaces: 24 24
Sturm bound: 11356801135680
Trace bound: 33

Dimensions

The following table gives the dimensions of various subspaces of M4(Γ1(1859))M_{4}(\Gamma_1(1859)).

Total New Old
Modular forms 428160 415680 12480
Cusp forms 423600 412000 11600
Eisenstein series 4560 3680 880

Trace form

412000q533q2533q3533q4533q5583q6687q7781q8453q978q10429q11102q12288q13728q14555q15913q161439q17++11413q99+O(q100) 412000 q - 533 q^{2} - 533 q^{3} - 533 q^{4} - 533 q^{5} - 583 q^{6} - 687 q^{7} - 781 q^{8} - 453 q^{9} - 78 q^{10} - 429 q^{11} - 102 q^{12} - 288 q^{13} - 728 q^{14} - 555 q^{15} - 913 q^{16} - 1439 q^{17}+ \cdots + 11413 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(Γ1(1859))S_{4}^{\mathrm{new}}(\Gamma_1(1859))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
1859.4.a χ1859(1,)\chi_{1859}(1, \cdot) 1859.4.a.a 2 1
1859.4.a.b 4
1859.4.a.c 6
1859.4.a.d 9
1859.4.a.e 11
1859.4.a.f 17
1859.4.a.g 17
1859.4.a.h 17
1859.4.a.i 17
1859.4.a.j 18
1859.4.a.k 18
1859.4.a.l 36
1859.4.a.m 36
1859.4.a.n 39
1859.4.a.o 39
1859.4.a.p 51
1859.4.a.q 51
1859.4.b χ1859(1013,)\chi_{1859}(1013, \cdot) n/a 384 1
1859.4.e χ1859(529,)\chi_{1859}(529, \cdot) n/a 772 2
1859.4.g χ1859(1253,)\chi_{1859}(1253, \cdot) n/a 904 2
1859.4.h χ1859(170,)\chi_{1859}(170, \cdot) n/a 1816 4
1859.4.j χ1859(23,)\chi_{1859}(23, \cdot) n/a 768 2
1859.4.n χ1859(168,)\chi_{1859}(168, \cdot) n/a 1808 4
1859.4.o χ1859(934,)\chi_{1859}(934, \cdot) n/a 1808 4
1859.4.q χ1859(144,)\chi_{1859}(144, \cdot) n/a 5448 12
1859.4.r χ1859(146,)\chi_{1859}(146, \cdot) n/a 3616 8
1859.4.t χ1859(239,)\chi_{1859}(239, \cdot) n/a 3616 8
1859.4.w χ1859(12,)\chi_{1859}(12, \cdot) n/a 5472 12
1859.4.y χ1859(147,)\chi_{1859}(147, \cdot) n/a 3616 8
1859.4.ba χ1859(100,)\chi_{1859}(100, \cdot) n/a 10896 24
1859.4.bb χ1859(21,)\chi_{1859}(21, \cdot) n/a 13056 24
1859.4.bd χ1859(19,)\chi_{1859}(19, \cdot) n/a 7232 16
1859.4.bf χ1859(14,)\chi_{1859}(14, \cdot) n/a 26112 48
1859.4.bh χ1859(56,)\chi_{1859}(56, \cdot) n/a 10944 24
1859.4.bj χ1859(25,)\chi_{1859}(25, \cdot) n/a 26112 48
1859.4.bn χ1859(32,)\chi_{1859}(32, \cdot) n/a 26112 48
1859.4.bo χ1859(3,)\chi_{1859}(3, \cdot) n/a 52224 96
1859.4.bp χ1859(8,)\chi_{1859}(8, \cdot) n/a 52224 96
1859.4.bs χ1859(4,)\chi_{1859}(4, \cdot) n/a 52224 96
1859.4.bv χ1859(2,)\chi_{1859}(2, \cdot) n/a 104448 192

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S4old(Γ1(1859))S_{4}^{\mathrm{old}}(\Gamma_1(1859)) into lower level spaces

S4old(Γ1(1859)) S_{4}^{\mathrm{old}}(\Gamma_1(1859)) \cong S4new(Γ1(1))S_{4}^{\mathrm{new}}(\Gamma_1(1))6^{\oplus 6}\oplusS4new(Γ1(11))S_{4}^{\mathrm{new}}(\Gamma_1(11))3^{\oplus 3}\oplusS4new(Γ1(13))S_{4}^{\mathrm{new}}(\Gamma_1(13))4^{\oplus 4}\oplusS4new(Γ1(143))S_{4}^{\mathrm{new}}(\Gamma_1(143))2^{\oplus 2}\oplusS4new(Γ1(169))S_{4}^{\mathrm{new}}(\Gamma_1(169))2^{\oplus 2}