Properties

Label 1862.2.bm
Level 18621862
Weight 22
Character orbit 1862.bm
Rep. character χ1862(239,)\chi_{1862}(239,\cdot)
Character field Q(ζ21)\Q(\zeta_{21})
Dimension 11521152
Sturm bound 560560

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1862=27219 1862 = 2 \cdot 7^{2} \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1862.bm (of order 2121 and degree 1212)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 931 931
Character field: Q(ζ21)\Q(\zeta_{21})
Sturm bound: 560560

Dimensions

The following table gives the dimensions of various subspaces of M2(1862,[χ])M_{2}(1862, [\chi]).

Total New Old
Modular forms 3408 1152 2256
Cusp forms 3312 1152 2160
Eisenstein series 96 0 96

Trace form

1152q+4q3+96q4+4q5+4q7+104q9+4q10+28q118q124q13+2q1412q15+96q1626q1728q19+20q20+6q214q22+4q23++172q99+O(q100) 1152 q + 4 q^{3} + 96 q^{4} + 4 q^{5} + 4 q^{7} + 104 q^{9} + 4 q^{10} + 28 q^{11} - 8 q^{12} - 4 q^{13} + 2 q^{14} - 12 q^{15} + 96 q^{16} - 26 q^{17} - 28 q^{19} + 20 q^{20} + 6 q^{21} - 4 q^{22} + 4 q^{23}+ \cdots + 172 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(1862,[χ])S_{2}^{\mathrm{new}}(1862, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(1862,[χ])S_{2}^{\mathrm{old}}(1862, [\chi]) into lower level spaces

S2old(1862,[χ]) S_{2}^{\mathrm{old}}(1862, [\chi]) \simeq S2new(931,[χ])S_{2}^{\mathrm{new}}(931, [\chi])2^{\oplus 2}