Properties

Label 1872.1.fi
Level $1872$
Weight $1$
Character orbit 1872.fi
Rep. character $\chi_{1872}(385,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $8$
Newform subspaces $2$
Sturm bound $336$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1872 = 2^{4} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1872.fi (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 117 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 2 \)
Sturm bound: \(336\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1872, [\chi])\).

Total New Old
Modular forms 72 16 56
Cusp forms 24 8 16
Eisenstein series 48 8 40

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 0 0 8 0

Trace form

\( 8 q + 2 q^{5} + 2 q^{7} - 4 q^{9} + 2 q^{11} - 2 q^{13} + 2 q^{15} + 4 q^{19} + 4 q^{21} + 2 q^{31} + 4 q^{33} - 2 q^{39} - 4 q^{45} - 4 q^{47} + 2 q^{57} - 2 q^{59} - 4 q^{61} + 2 q^{63} + 2 q^{65} + 4 q^{73}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(1872, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1872.1.fi.a 1872.fi 117.y $4$ $0.934$ \(\Q(\zeta_{12})\) $S_{4}$ None None 936.1.dm.b \(0\) \(-2\) \(2\) \(0\) \(q-\zeta_{12}^{2}q^{3}+(\zeta_{12}^{2}-\zeta_{12}^{5})q^{5}+\zeta_{12}^{4}q^{9}+\cdots\)
1872.1.fi.b 1872.fi 117.y $4$ $0.934$ \(\Q(\zeta_{12})\) $S_{4}$ None None 936.1.dm.a \(0\) \(2\) \(0\) \(2\) \(q+\zeta_{12}^{2}q^{3}+(\zeta_{12}-\zeta_{12}^{4})q^{7}+\zeta_{12}^{4}q^{9}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(1872, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(1872, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(936, [\chi])\)\(^{\oplus 2}\)