Properties

Label 1872.4.a
Level 18721872
Weight 44
Character orbit 1872.a
Rep. character χ1872(1,)\chi_{1872}(1,\cdot)
Character field Q\Q
Dimension 9090
Newform subspaces 4545
Sturm bound 13441344
Trace bound 77

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1872=243213 1872 = 2^{4} \cdot 3^{2} \cdot 13
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1872.a (trivial)
Character field: Q\Q
Newform subspaces: 45 45
Sturm bound: 13441344
Trace bound: 77
Distinguishing TpT_p: 55, 77

Dimensions

The following table gives the dimensions of various subspaces of M4(Γ0(1872))M_{4}(\Gamma_0(1872)).

Total New Old
Modular forms 1032 90 942
Cusp forms 984 90 894
Eisenstein series 48 0 48

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

22331313FrickeDim
++++++++1010
++++--88
++-++-1313
++--++1414
-++++-88
-++-++1010
--++++1414
----1313
Plus space++4848
Minus space-4242

Trace form

90q+14q7+46q11+76q17138q19248q23+2082q25144q29+450q31+576q358q37+20q41620q431838q47+4818q49+572q53+1140q55++708q97+O(q100) 90 q + 14 q^{7} + 46 q^{11} + 76 q^{17} - 138 q^{19} - 248 q^{23} + 2082 q^{25} - 144 q^{29} + 450 q^{31} + 576 q^{35} - 8 q^{37} + 20 q^{41} - 620 q^{43} - 1838 q^{47} + 4818 q^{49} + 572 q^{53} + 1140 q^{55}+ \cdots + 708 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(Γ0(1872))S_{4}^{\mathrm{new}}(\Gamma_0(1872)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 3 13
1872.4.a.a 1872.a 1.a 11 110.452110.452 Q\Q None 104.4.a.b 00 00 19-19 33 ++ - ++ SU(2)\mathrm{SU}(2) q19q5+3q72q1113q13+q-19q^{5}+3q^{7}-2q^{11}-13q^{13}+\cdots
1872.4.a.b 1872.a 1.a 11 110.452110.452 Q\Q None 26.4.a.b 00 00 17-17 3535 - - - SU(2)\mathrm{SU}(2) q17q5+35q7+2q11+13q13+q-17q^{5}+35q^{7}+2q^{11}+13q^{13}+\cdots
1872.4.a.c 1872.a 1.a 11 110.452110.452 Q\Q None 26.4.a.a 00 00 11-11 19-19 - - ++ SU(2)\mathrm{SU}(2) q11q519q738q1113q13+q-11q^{5}-19q^{7}-38q^{11}-13q^{13}+\cdots
1872.4.a.d 1872.a 1.a 11 110.452110.452 Q\Q None 78.4.a.c 00 00 10-10 88 - - - SU(2)\mathrm{SU}(2) q10q5+8q7+40q11+13q13+q-10q^{5}+8q^{7}+40q^{11}+13q^{13}+\cdots
1872.4.a.e 1872.a 1.a 11 110.452110.452 Q\Q None 78.4.a.e 00 00 6-6 20-20 - - - SU(2)\mathrm{SU}(2) q6q520q7+24q11+13q13+q-6q^{5}-20q^{7}+24q^{11}+13q^{13}+\cdots
1872.4.a.f 1872.a 1.a 11 110.452110.452 Q\Q None 78.4.a.f 00 00 4-4 4-4 - - ++ SU(2)\mathrm{SU}(2) q4q54q7+2q1113q13+6q17+q-4q^{5}-4q^{7}+2q^{11}-13q^{13}+6q^{17}+\cdots
1872.4.a.g 1872.a 1.a 11 110.452110.452 Q\Q None 234.4.a.d 00 00 2-2 2626 - ++ ++ SU(2)\mathrm{SU}(2) q2q5+26q7+52q1113q13+q-2q^{5}+26q^{7}+52q^{11}-13q^{13}+\cdots
1872.4.a.h 1872.a 1.a 11 110.452110.452 Q\Q None 234.4.a.d 00 00 22 2626 - ++ ++ SU(2)\mathrm{SU}(2) q+2q5+26q752q1113q13+q+2q^{5}+26q^{7}-52q^{11}-13q^{13}+\cdots
1872.4.a.i 1872.a 1.a 11 110.452110.452 Q\Q None 156.4.a.b 00 00 22 3232 - - - SU(2)\mathrm{SU}(2) q+2q5+25q768q11+13q13+q+2q^{5}+2^{5}q^{7}-68q^{11}+13q^{13}+\cdots
1872.4.a.j 1872.a 1.a 11 110.452110.452 Q\Q None 156.4.a.a 00 00 66 44 - - - SU(2)\mathrm{SU}(2) q+6q5+4q7+62q11+13q13+q+6q^{5}+4q^{7}+6^{2}q^{11}+13q^{13}+\cdots
1872.4.a.k 1872.a 1.a 11 110.452110.452 Q\Q None 13.4.a.a 00 00 77 1313 - - - SU(2)\mathrm{SU}(2) q+7q5+13q726q11+13q13+q+7q^{5}+13q^{7}-26q^{11}+13q^{13}+\cdots
1872.4.a.l 1872.a 1.a 11 110.452110.452 Q\Q None 104.4.a.a 00 00 77 2121 ++ - - SU(2)\mathrm{SU}(2) q+7q5+21q7+6q11+13q13+q+7q^{5}+21q^{7}+6q^{11}+13q^{13}+\cdots
1872.4.a.m 1872.a 1.a 11 110.452110.452 Q\Q None 39.4.a.a 00 00 1212 2-2 - - - SU(2)\mathrm{SU}(2) q+12q52q762q11+13q13+q+12q^{5}-2q^{7}-6^{2}q^{11}+13q^{13}+\cdots
1872.4.a.n 1872.a 1.a 11 110.452110.452 Q\Q None 52.4.a.a 00 00 1313 1111 - - ++ SU(2)\mathrm{SU}(2) q+13q5+11q72q1113q13+q+13q^{5}+11q^{7}-2q^{11}-13q^{13}+\cdots
1872.4.a.o 1872.a 1.a 11 110.452110.452 Q\Q None 78.4.a.a 00 00 1616 28-28 - - ++ SU(2)\mathrm{SU}(2) q+24q528q7+34q1113q13+q+2^{4}q^{5}-28q^{7}+34q^{11}-13q^{13}+\cdots
1872.4.a.p 1872.a 1.a 11 110.452110.452 Q\Q None 78.4.a.b 00 00 1616 88 - - ++ SU(2)\mathrm{SU}(2) q+24q5+8q738q1113q13+q+2^{4}q^{5}+8q^{7}-38q^{11}-13q^{13}+\cdots
1872.4.a.q 1872.a 1.a 11 110.452110.452 Q\Q None 26.4.a.c 00 00 1818 20-20 - - - SU(2)\mathrm{SU}(2) q+18q520q748q11+13q13+q+18q^{5}-20q^{7}-48q^{11}+13q^{13}+\cdots
1872.4.a.r 1872.a 1.a 11 110.452110.452 Q\Q None 78.4.a.d 00 00 2020 3232 - - ++ SU(2)\mathrm{SU}(2) q+20q5+25q7+50q1113q13+q+20q^{5}+2^{5}q^{7}+50q^{11}-13q^{13}+\cdots
1872.4.a.s 1872.a 1.a 22 110.452110.452 Q(10)\Q(\sqrt{10}) None 156.4.a.d 00 00 24-24 8-8 - - ++ SU(2)\mathrm{SU}(2) q+(12+β)q5+(43β)q7+(18+)q11+q+(-12+\beta )q^{5}+(-4-3\beta )q^{7}+(18+\cdots)q^{11}+\cdots
1872.4.a.t 1872.a 1.a 22 110.452110.452 Q(14)\Q(\sqrt{14}) None 39.4.a.b 00 00 24-24 00 - - ++ SU(2)\mathrm{SU}(2) q+(12+β)q5+βq7+(226β)q11+q+(-12+\beta )q^{5}+\beta q^{7}+(-22-6\beta )q^{11}+\cdots
1872.4.a.u 1872.a 1.a 22 110.452110.452 Q(217)\Q(\sqrt{217}) None 52.4.a.b 00 00 23-23 27-27 - - - SU(2)\mathrm{SU}(2) q+(11β)q5+(13β)q7+(2+)q11+q+(-11-\beta )q^{5}+(-13-\beta )q^{7}+(2+\cdots)q^{11}+\cdots
1872.4.a.v 1872.a 1.a 22 110.452110.452 Q(43)\Q(\sqrt{43}) None 312.4.a.f 00 00 12-12 44-44 ++ - ++ SU(2)\mathrm{SU}(2) q+(6+β)q5+(22+β)q7+26q11+q+(-6+\beta )q^{5}+(-22+\beta )q^{7}+26q^{11}+\cdots
1872.4.a.w 1872.a 1.a 22 110.452110.452 Q(22)\Q(\sqrt{22}) None 234.4.a.l 00 00 8-8 12-12 - ++ - SU(2)\mathrm{SU}(2) q+(4+β)q5+(6+β)q7+(22+5β)q11+q+(-4+\beta )q^{5}+(-6+\beta )q^{7}+(22+5\beta )q^{11}+\cdots
1872.4.a.x 1872.a 1.a 22 110.452110.452 Q(113)\Q(\sqrt{113}) None 312.4.a.c 00 00 6-6 1010 ++ - - SU(2)\mathrm{SU}(2) q+(3β)q5+(5+β)q7+(84β)q11+q+(-3-\beta )q^{5}+(5+\beta )q^{7}+(-8-4\beta )q^{11}+\cdots
1872.4.a.y 1872.a 1.a 22 110.452110.452 Q(22)\Q(\sqrt{22}) None 156.4.a.c 00 00 00 8-8 - - ++ SU(2)\mathrm{SU}(2) q+βq5+(43β)q7+(302β)q11+q+\beta q^{5}+(-4-3\beta )q^{7}+(-30-2\beta )q^{11}+\cdots
1872.4.a.z 1872.a 1.a 22 110.452110.452 Q(13)\Q(\sqrt{13}) None 468.4.a.f 00 00 00 44 - ++ ++ SU(2)\mathrm{SU}(2) qβq5+2q74βq1113q13+q-\beta q^{5}+2q^{7}-4\beta q^{11}-13q^{13}+\cdots
1872.4.a.ba 1872.a 1.a 22 110.452110.452 Q(7)\Q(\sqrt{7}) None 117.4.a.e 00 00 00 4444 - ++ - SU(2)\mathrm{SU}(2) q+2βq5+22q7βq11+13q13+q+2\beta q^{5}+22q^{7}-\beta q^{11}+13q^{13}+\cdots
1872.4.a.bb 1872.a 1.a 22 110.452110.452 Q(17)\Q(\sqrt{17}) None 13.4.a.b 00 00 33 99 - - ++ SU(2)\mathrm{SU}(2) q+(1+β)q5+(1+11β)q7+(4612β)q11+q+(1+\beta )q^{5}+(-1+11\beta )q^{7}+(46-12\beta )q^{11}+\cdots
1872.4.a.bc 1872.a 1.a 22 110.452110.452 Q(73)\Q(\sqrt{73}) None 104.4.a.c 00 00 33 2525 ++ - ++ SU(2)\mathrm{SU}(2) q+3βq5+(12+β)q7+(30+4β)q11+q+3\beta q^{5}+(12+\beta )q^{7}+(-30+4\beta )q^{11}+\cdots
1872.4.a.bd 1872.a 1.a 22 110.452110.452 Q(55)\Q(\sqrt{55}) None 312.4.a.b 00 00 44 20-20 ++ - ++ SU(2)\mathrm{SU}(2) q+(2+β)q5+(10+β)q7+(10+)q11+q+(2+\beta )q^{5}+(-10+\beta )q^{7}+(-10+\cdots)q^{11}+\cdots
1872.4.a.be 1872.a 1.a 22 110.452110.452 Q(3)\Q(\sqrt{3}) None 312.4.a.a 00 00 44 4-4 ++ - ++ SU(2)\mathrm{SU}(2) q+(2+β)q5+(23β)q7+(146β)q11+q+(2+\beta )q^{5}+(-2-3\beta )q^{7}+(14-6\beta )q^{11}+\cdots
1872.4.a.bf 1872.a 1.a 22 110.452110.452 Q(7)\Q(\sqrt{7}) None 312.4.a.e 00 00 44 2020 ++ - ++ SU(2)\mathrm{SU}(2) q+(2+β)q5+(103β)q7+(304β)q11+q+(2+\beta )q^{5}+(10-3\beta )q^{7}+(-30-4\beta )q^{11}+\cdots
1872.4.a.bg 1872.a 1.a 22 110.452110.452 Q(22)\Q(\sqrt{22}) None 234.4.a.l 00 00 88 12-12 - ++ - SU(2)\mathrm{SU}(2) q+(4+β)q5+(6β)q7+(22+5β)q11+q+(4+\beta )q^{5}+(-6-\beta )q^{7}+(-22+5\beta )q^{11}+\cdots
1872.4.a.bh 1872.a 1.a 22 110.452110.452 Q(321)\Q(\sqrt{321}) None 104.4.a.d 00 00 1111 1-1 ++ - ++ SU(2)\mathrm{SU}(2) q+(6β)q5+(2+3β)q7+58q11+q+(6-\beta )q^{5}+(-2+3\beta )q^{7}+58q^{11}+\cdots
1872.4.a.bi 1872.a 1.a 22 110.452110.452 Q(17)\Q(\sqrt{17}) None 312.4.a.d 00 00 1818 1010 ++ - - SU(2)\mathrm{SU}(2) q+(9β)q5+(5+5β)q7+(2+14β)q11+q+(9-\beta )q^{5}+(5+5\beta )q^{7}+(2+14\beta )q^{11}+\cdots
1872.4.a.bj 1872.a 1.a 33 110.452110.452 3.3.36248.1 None 312.4.a.g 00 00 16-16 2222 ++ - - SU(2)\mathrm{SU}(2) q+(5β2)q5+(8β1β2)q7+q+(-5-\beta _{2})q^{5}+(8-\beta _{1}-\beta _{2})q^{7}+\cdots
1872.4.a.bk 1872.a 1.a 33 110.452110.452 3.3.3144.1 None 39.4.a.c 00 00 4-4 30-30 - - - SU(2)\mathrm{SU}(2) q+(1+β2)q5+(113β1)q7+q+(-1+\beta _{2})q^{5}+(-11-3\beta _{1})q^{7}+\cdots
1872.4.a.bl 1872.a 1.a 33 110.452110.452 3.3.13916.1 None 312.4.a.h 00 00 44 6-6 ++ - - SU(2)\mathrm{SU}(2) q+(1β2)q5+(2β1β2)q7+q+(1-\beta _{2})q^{5}+(-2-\beta _{1}-\beta _{2})q^{7}+\cdots
1872.4.a.bm 1872.a 1.a 33 110.452110.452 3.3.18257.1 None 104.4.a.e 00 00 88 36-36 ++ - - SU(2)\mathrm{SU}(2) q+(3+2β1+β2)q5+(12β1)q7+q+(3+2\beta _{1}+\beta _{2})q^{5}+(-12-\beta _{1})q^{7}+\cdots
1872.4.a.bn 1872.a 1.a 44 110.452110.452 4.4.6390848.1 None 936.4.a.n 00 00 8-8 24-24 ++ ++ - SU(2)\mathrm{SU}(2) q+(2β1)q5+(6β2)q7+(24+)q11+q+(-2-\beta _{1})q^{5}+(-6-\beta _{2})q^{7}+(2^{4}+\cdots)q^{11}+\cdots
1872.4.a.bo 1872.a 1.a 44 110.452110.452 4.4.1520092.1 None 117.4.a.g 00 00 00 36-36 - ++ ++ SU(2)\mathrm{SU}(2) q+β3q5+(9β1)q7+(β2β3)q11+q+\beta _{3}q^{5}+(-9-\beta _{1})q^{7}+(-\beta _{2}-\beta _{3})q^{11}+\cdots
1872.4.a.bp 1872.a 1.a 44 110.452110.452 4.4.5126992.1 None 468.4.a.h 00 00 00 00 - ++ - SU(2)\mathrm{SU}(2) q+β1q5+β3q7+(β1+β2)q11+q+\beta _{1}q^{5}+\beta _{3}q^{7}+(-\beta _{1}+\beta _{2})q^{11}+\cdots
1872.4.a.bq 1872.a 1.a 44 110.452110.452 4.4.6390848.1 None 936.4.a.n 00 00 88 24-24 ++ ++ - SU(2)\mathrm{SU}(2) q+(2+β1)q5+(6β2)q7+(24+)q11+q+(2+\beta _{1})q^{5}+(-6-\beta _{2})q^{7}+(-2^{4}+\cdots)q^{11}+\cdots
1872.4.a.br 1872.a 1.a 55 110.452110.452 Q[x]/(x5)\mathbb{Q}[x]/(x^{5} - \cdots) None 936.4.a.p 00 00 2-2 1818 ++ ++ ++ SU(2)\mathrm{SU}(2) qβ2q5+(4+β1)q7+(5β12β2+)q11+q-\beta _{2}q^{5}+(4+\beta _{1})q^{7}+(-5-\beta _{1}-2\beta _{2}+\cdots)q^{11}+\cdots
1872.4.a.bs 1872.a 1.a 55 110.452110.452 Q[x]/(x5)\mathbb{Q}[x]/(x^{5} - \cdots) None 936.4.a.p 00 00 22 1818 ++ ++ ++ SU(2)\mathrm{SU}(2) q+β2q5+(4+β1)q7+(5+β1+2β2+)q11+q+\beta _{2}q^{5}+(4+\beta _{1})q^{7}+(5+\beta _{1}+2\beta _{2}+\cdots)q^{11}+\cdots

Decomposition of S4old(Γ0(1872))S_{4}^{\mathrm{old}}(\Gamma_0(1872)) into lower level spaces

S4old(Γ0(1872)) S_{4}^{\mathrm{old}}(\Gamma_0(1872)) \simeq S4new(Γ0(6))S_{4}^{\mathrm{new}}(\Gamma_0(6))16^{\oplus 16}\oplusS4new(Γ0(8))S_{4}^{\mathrm{new}}(\Gamma_0(8))12^{\oplus 12}\oplusS4new(Γ0(9))S_{4}^{\mathrm{new}}(\Gamma_0(9))10^{\oplus 10}\oplusS4new(Γ0(12))S_{4}^{\mathrm{new}}(\Gamma_0(12))12^{\oplus 12}\oplusS4new(Γ0(13))S_{4}^{\mathrm{new}}(\Gamma_0(13))15^{\oplus 15}\oplusS4new(Γ0(16))S_{4}^{\mathrm{new}}(\Gamma_0(16))6^{\oplus 6}\oplusS4new(Γ0(18))S_{4}^{\mathrm{new}}(\Gamma_0(18))8^{\oplus 8}\oplusS4new(Γ0(24))S_{4}^{\mathrm{new}}(\Gamma_0(24))8^{\oplus 8}\oplusS4new(Γ0(26))S_{4}^{\mathrm{new}}(\Gamma_0(26))12^{\oplus 12}\oplusS4new(Γ0(36))S_{4}^{\mathrm{new}}(\Gamma_0(36))6^{\oplus 6}\oplusS4new(Γ0(39))S_{4}^{\mathrm{new}}(\Gamma_0(39))10^{\oplus 10}\oplusS4new(Γ0(48))S_{4}^{\mathrm{new}}(\Gamma_0(48))4^{\oplus 4}\oplusS4new(Γ0(52))S_{4}^{\mathrm{new}}(\Gamma_0(52))9^{\oplus 9}\oplusS4new(Γ0(72))S_{4}^{\mathrm{new}}(\Gamma_0(72))4^{\oplus 4}\oplusS4new(Γ0(78))S_{4}^{\mathrm{new}}(\Gamma_0(78))8^{\oplus 8}\oplusS4new(Γ0(104))S_{4}^{\mathrm{new}}(\Gamma_0(104))6^{\oplus 6}\oplusS4new(Γ0(117))S_{4}^{\mathrm{new}}(\Gamma_0(117))5^{\oplus 5}\oplusS4new(Γ0(144))S_{4}^{\mathrm{new}}(\Gamma_0(144))2^{\oplus 2}\oplusS4new(Γ0(156))S_{4}^{\mathrm{new}}(\Gamma_0(156))6^{\oplus 6}\oplusS4new(Γ0(208))S_{4}^{\mathrm{new}}(\Gamma_0(208))3^{\oplus 3}\oplusS4new(Γ0(234))S_{4}^{\mathrm{new}}(\Gamma_0(234))4^{\oplus 4}\oplusS4new(Γ0(312))S_{4}^{\mathrm{new}}(\Gamma_0(312))4^{\oplus 4}\oplusS4new(Γ0(468))S_{4}^{\mathrm{new}}(\Gamma_0(468))3^{\oplus 3}\oplusS4new(Γ0(624))S_{4}^{\mathrm{new}}(\Gamma_0(624))2^{\oplus 2}\oplusS4new(Γ0(936))S_{4}^{\mathrm{new}}(\Gamma_0(936))2^{\oplus 2}