Properties

Label 1872.4.a
Level $1872$
Weight $4$
Character orbit 1872.a
Rep. character $\chi_{1872}(1,\cdot)$
Character field $\Q$
Dimension $90$
Newform subspaces $45$
Sturm bound $1344$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1872 = 2^{4} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1872.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 45 \)
Sturm bound: \(1344\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1872))\).

Total New Old
Modular forms 1032 90 942
Cusp forms 984 90 894
Eisenstein series 48 0 48

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(13\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(10\)
\(+\)\(+\)\(-\)\(-\)\(8\)
\(+\)\(-\)\(+\)\(-\)\(13\)
\(+\)\(-\)\(-\)\(+\)\(14\)
\(-\)\(+\)\(+\)\(-\)\(8\)
\(-\)\(+\)\(-\)\(+\)\(10\)
\(-\)\(-\)\(+\)\(+\)\(14\)
\(-\)\(-\)\(-\)\(-\)\(13\)
Plus space\(+\)\(48\)
Minus space\(-\)\(42\)

Trace form

\( 90 q + 14 q^{7} + 46 q^{11} + 76 q^{17} - 138 q^{19} - 248 q^{23} + 2082 q^{25} - 144 q^{29} + 450 q^{31} + 576 q^{35} - 8 q^{37} + 20 q^{41} - 620 q^{43} - 1838 q^{47} + 4818 q^{49} + 572 q^{53} + 1140 q^{55}+ \cdots + 708 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1872))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 13
1872.4.a.a 1872.a 1.a $1$ $110.452$ \(\Q\) None 104.4.a.b \(0\) \(0\) \(-19\) \(3\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-19q^{5}+3q^{7}-2q^{11}-13q^{13}+\cdots\)
1872.4.a.b 1872.a 1.a $1$ $110.452$ \(\Q\) None 26.4.a.b \(0\) \(0\) \(-17\) \(35\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-17q^{5}+35q^{7}+2q^{11}+13q^{13}+\cdots\)
1872.4.a.c 1872.a 1.a $1$ $110.452$ \(\Q\) None 26.4.a.a \(0\) \(0\) \(-11\) \(-19\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-11q^{5}-19q^{7}-38q^{11}-13q^{13}+\cdots\)
1872.4.a.d 1872.a 1.a $1$ $110.452$ \(\Q\) None 78.4.a.c \(0\) \(0\) \(-10\) \(8\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-10q^{5}+8q^{7}+40q^{11}+13q^{13}+\cdots\)
1872.4.a.e 1872.a 1.a $1$ $110.452$ \(\Q\) None 78.4.a.e \(0\) \(0\) \(-6\) \(-20\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-6q^{5}-20q^{7}+24q^{11}+13q^{13}+\cdots\)
1872.4.a.f 1872.a 1.a $1$ $110.452$ \(\Q\) None 78.4.a.f \(0\) \(0\) \(-4\) \(-4\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-4q^{5}-4q^{7}+2q^{11}-13q^{13}+6q^{17}+\cdots\)
1872.4.a.g 1872.a 1.a $1$ $110.452$ \(\Q\) None 234.4.a.d \(0\) \(0\) \(-2\) \(26\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{5}+26q^{7}+52q^{11}-13q^{13}+\cdots\)
1872.4.a.h 1872.a 1.a $1$ $110.452$ \(\Q\) None 234.4.a.d \(0\) \(0\) \(2\) \(26\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{5}+26q^{7}-52q^{11}-13q^{13}+\cdots\)
1872.4.a.i 1872.a 1.a $1$ $110.452$ \(\Q\) None 156.4.a.b \(0\) \(0\) \(2\) \(32\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{5}+2^{5}q^{7}-68q^{11}+13q^{13}+\cdots\)
1872.4.a.j 1872.a 1.a $1$ $110.452$ \(\Q\) None 156.4.a.a \(0\) \(0\) \(6\) \(4\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+6q^{5}+4q^{7}+6^{2}q^{11}+13q^{13}+\cdots\)
1872.4.a.k 1872.a 1.a $1$ $110.452$ \(\Q\) None 13.4.a.a \(0\) \(0\) \(7\) \(13\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+7q^{5}+13q^{7}-26q^{11}+13q^{13}+\cdots\)
1872.4.a.l 1872.a 1.a $1$ $110.452$ \(\Q\) None 104.4.a.a \(0\) \(0\) \(7\) \(21\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+7q^{5}+21q^{7}+6q^{11}+13q^{13}+\cdots\)
1872.4.a.m 1872.a 1.a $1$ $110.452$ \(\Q\) None 39.4.a.a \(0\) \(0\) \(12\) \(-2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+12q^{5}-2q^{7}-6^{2}q^{11}+13q^{13}+\cdots\)
1872.4.a.n 1872.a 1.a $1$ $110.452$ \(\Q\) None 52.4.a.a \(0\) \(0\) \(13\) \(11\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+13q^{5}+11q^{7}-2q^{11}-13q^{13}+\cdots\)
1872.4.a.o 1872.a 1.a $1$ $110.452$ \(\Q\) None 78.4.a.a \(0\) \(0\) \(16\) \(-28\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2^{4}q^{5}-28q^{7}+34q^{11}-13q^{13}+\cdots\)
1872.4.a.p 1872.a 1.a $1$ $110.452$ \(\Q\) None 78.4.a.b \(0\) \(0\) \(16\) \(8\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2^{4}q^{5}+8q^{7}-38q^{11}-13q^{13}+\cdots\)
1872.4.a.q 1872.a 1.a $1$ $110.452$ \(\Q\) None 26.4.a.c \(0\) \(0\) \(18\) \(-20\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+18q^{5}-20q^{7}-48q^{11}+13q^{13}+\cdots\)
1872.4.a.r 1872.a 1.a $1$ $110.452$ \(\Q\) None 78.4.a.d \(0\) \(0\) \(20\) \(32\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+20q^{5}+2^{5}q^{7}+50q^{11}-13q^{13}+\cdots\)
1872.4.a.s 1872.a 1.a $2$ $110.452$ \(\Q(\sqrt{10}) \) None 156.4.a.d \(0\) \(0\) \(-24\) \(-8\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-12+\beta )q^{5}+(-4-3\beta )q^{7}+(18+\cdots)q^{11}+\cdots\)
1872.4.a.t 1872.a 1.a $2$ $110.452$ \(\Q(\sqrt{14}) \) None 39.4.a.b \(0\) \(0\) \(-24\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-12+\beta )q^{5}+\beta q^{7}+(-22-6\beta )q^{11}+\cdots\)
1872.4.a.u 1872.a 1.a $2$ $110.452$ \(\Q(\sqrt{217}) \) None 52.4.a.b \(0\) \(0\) \(-23\) \(-27\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(-11-\beta )q^{5}+(-13-\beta )q^{7}+(2+\cdots)q^{11}+\cdots\)
1872.4.a.v 1872.a 1.a $2$ $110.452$ \(\Q(\sqrt{43}) \) None 312.4.a.f \(0\) \(0\) \(-12\) \(-44\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-6+\beta )q^{5}+(-22+\beta )q^{7}+26q^{11}+\cdots\)
1872.4.a.w 1872.a 1.a $2$ $110.452$ \(\Q(\sqrt{22}) \) None 234.4.a.l \(0\) \(0\) \(-8\) \(-12\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-4+\beta )q^{5}+(-6+\beta )q^{7}+(22+5\beta )q^{11}+\cdots\)
1872.4.a.x 1872.a 1.a $2$ $110.452$ \(\Q(\sqrt{113}) \) None 312.4.a.c \(0\) \(0\) \(-6\) \(10\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(-3-\beta )q^{5}+(5+\beta )q^{7}+(-8-4\beta )q^{11}+\cdots\)
1872.4.a.y 1872.a 1.a $2$ $110.452$ \(\Q(\sqrt{22}) \) None 156.4.a.c \(0\) \(0\) \(0\) \(-8\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{5}+(-4-3\beta )q^{7}+(-30-2\beta )q^{11}+\cdots\)
1872.4.a.z 1872.a 1.a $2$ $110.452$ \(\Q(\sqrt{13}) \) None 468.4.a.f \(0\) \(0\) \(0\) \(4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta q^{5}+2q^{7}-4\beta q^{11}-13q^{13}+\cdots\)
1872.4.a.ba 1872.a 1.a $2$ $110.452$ \(\Q(\sqrt{7}) \) None 117.4.a.e \(0\) \(0\) \(0\) \(44\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2\beta q^{5}+22q^{7}-\beta q^{11}+13q^{13}+\cdots\)
1872.4.a.bb 1872.a 1.a $2$ $110.452$ \(\Q(\sqrt{17}) \) None 13.4.a.b \(0\) \(0\) \(3\) \(9\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{5}+(-1+11\beta )q^{7}+(46-12\beta )q^{11}+\cdots\)
1872.4.a.bc 1872.a 1.a $2$ $110.452$ \(\Q(\sqrt{73}) \) None 104.4.a.c \(0\) \(0\) \(3\) \(25\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3\beta q^{5}+(12+\beta )q^{7}+(-30+4\beta )q^{11}+\cdots\)
1872.4.a.bd 1872.a 1.a $2$ $110.452$ \(\Q(\sqrt{55}) \) None 312.4.a.b \(0\) \(0\) \(4\) \(-20\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(2+\beta )q^{5}+(-10+\beta )q^{7}+(-10+\cdots)q^{11}+\cdots\)
1872.4.a.be 1872.a 1.a $2$ $110.452$ \(\Q(\sqrt{3}) \) None 312.4.a.a \(0\) \(0\) \(4\) \(-4\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(2+\beta )q^{5}+(-2-3\beta )q^{7}+(14-6\beta )q^{11}+\cdots\)
1872.4.a.bf 1872.a 1.a $2$ $110.452$ \(\Q(\sqrt{7}) \) None 312.4.a.e \(0\) \(0\) \(4\) \(20\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(2+\beta )q^{5}+(10-3\beta )q^{7}+(-30-4\beta )q^{11}+\cdots\)
1872.4.a.bg 1872.a 1.a $2$ $110.452$ \(\Q(\sqrt{22}) \) None 234.4.a.l \(0\) \(0\) \(8\) \(-12\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(4+\beta )q^{5}+(-6-\beta )q^{7}+(-22+5\beta )q^{11}+\cdots\)
1872.4.a.bh 1872.a 1.a $2$ $110.452$ \(\Q(\sqrt{321}) \) None 104.4.a.d \(0\) \(0\) \(11\) \(-1\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(6-\beta )q^{5}+(-2+3\beta )q^{7}+58q^{11}+\cdots\)
1872.4.a.bi 1872.a 1.a $2$ $110.452$ \(\Q(\sqrt{17}) \) None 312.4.a.d \(0\) \(0\) \(18\) \(10\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(9-\beta )q^{5}+(5+5\beta )q^{7}+(2+14\beta )q^{11}+\cdots\)
1872.4.a.bj 1872.a 1.a $3$ $110.452$ 3.3.36248.1 None 312.4.a.g \(0\) \(0\) \(-16\) \(22\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(-5-\beta _{2})q^{5}+(8-\beta _{1}-\beta _{2})q^{7}+\cdots\)
1872.4.a.bk 1872.a 1.a $3$ $110.452$ 3.3.3144.1 None 39.4.a.c \(0\) \(0\) \(-4\) \(-30\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{2})q^{5}+(-11-3\beta _{1})q^{7}+\cdots\)
1872.4.a.bl 1872.a 1.a $3$ $110.452$ 3.3.13916.1 None 312.4.a.h \(0\) \(0\) \(4\) \(-6\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{2})q^{5}+(-2-\beta _{1}-\beta _{2})q^{7}+\cdots\)
1872.4.a.bm 1872.a 1.a $3$ $110.452$ 3.3.18257.1 None 104.4.a.e \(0\) \(0\) \(8\) \(-36\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(3+2\beta _{1}+\beta _{2})q^{5}+(-12-\beta _{1})q^{7}+\cdots\)
1872.4.a.bn 1872.a 1.a $4$ $110.452$ 4.4.6390848.1 None 936.4.a.n \(0\) \(0\) \(-8\) \(-24\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-2-\beta _{1})q^{5}+(-6-\beta _{2})q^{7}+(2^{4}+\cdots)q^{11}+\cdots\)
1872.4.a.bo 1872.a 1.a $4$ $110.452$ 4.4.1520092.1 None 117.4.a.g \(0\) \(0\) \(0\) \(-36\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{3}q^{5}+(-9-\beta _{1})q^{7}+(-\beta _{2}-\beta _{3})q^{11}+\cdots\)
1872.4.a.bp 1872.a 1.a $4$ $110.452$ 4.4.5126992.1 None 468.4.a.h \(0\) \(0\) \(0\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{5}+\beta _{3}q^{7}+(-\beta _{1}+\beta _{2})q^{11}+\cdots\)
1872.4.a.bq 1872.a 1.a $4$ $110.452$ 4.4.6390848.1 None 936.4.a.n \(0\) \(0\) \(8\) \(-24\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(2+\beta _{1})q^{5}+(-6-\beta _{2})q^{7}+(-2^{4}+\cdots)q^{11}+\cdots\)
1872.4.a.br 1872.a 1.a $5$ $110.452$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 936.4.a.p \(0\) \(0\) \(-2\) \(18\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{5}+(4+\beta _{1})q^{7}+(-5-\beta _{1}-2\beta _{2}+\cdots)q^{11}+\cdots\)
1872.4.a.bs 1872.a 1.a $5$ $110.452$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 936.4.a.p \(0\) \(0\) \(2\) \(18\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{5}+(4+\beta _{1})q^{7}+(5+\beta _{1}+2\beta _{2}+\cdots)q^{11}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1872))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(1872)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 15}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(78))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(104))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(117))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(144))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(156))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(208))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(234))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(312))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(468))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(624))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(936))\)\(^{\oplus 2}\)