Properties

Label 1881.2.eb
Level 18811881
Weight 22
Character orbit 1881.eb
Rep. character χ1881(82,)\chi_{1881}(82,\cdot)
Character field Q(ζ45)\Q(\zeta_{45})
Dimension 23522352
Sturm bound 480480

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1881=321119 1881 = 3^{2} \cdot 11 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1881.eb (of order 4545 and degree 2424)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 209 209
Character field: Q(ζ45)\Q(\zeta_{45})
Sturm bound: 480480

Dimensions

The following table gives the dimensions of various subspaces of M2(1881,[χ])M_{2}(1881, [\chi]).

Total New Old
Modular forms 5952 2448 3504
Cusp forms 5568 2352 3216
Eisenstein series 384 96 288

Trace form

2352q+18q218q4+18q5+27q848q10+9q1118q136q1430q16+36q1718q19+174q206q22+48q2318q25+69q2642q28++66q98+O(q100) 2352 q + 18 q^{2} - 18 q^{4} + 18 q^{5} + 27 q^{8} - 48 q^{10} + 9 q^{11} - 18 q^{13} - 6 q^{14} - 30 q^{16} + 36 q^{17} - 18 q^{19} + 174 q^{20} - 6 q^{22} + 48 q^{23} - 18 q^{25} + 69 q^{26} - 42 q^{28}+ \cdots + 66 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(1881,[χ])S_{2}^{\mathrm{new}}(1881, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(1881,[χ])S_{2}^{\mathrm{old}}(1881, [\chi]) into lower level spaces

S2old(1881,[χ]) S_{2}^{\mathrm{old}}(1881, [\chi]) \simeq S2new(209,[χ])S_{2}^{\mathrm{new}}(209, [\chi])3^{\oplus 3}\oplusS2new(627,[χ])S_{2}^{\mathrm{new}}(627, [\chi])2^{\oplus 2}