Properties

Label 1881.2.et
Level 18811881
Weight 22
Character orbit 1881.et
Rep. character χ1881(53,)\chi_{1881}(53,\cdot)
Character field Q(ζ90)\Q(\zeta_{90})
Dimension 19201920
Sturm bound 480480

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1881=321119 1881 = 3^{2} \cdot 11 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1881.et (of order 9090 and degree 2424)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 627 627
Character field: Q(ζ90)\Q(\zeta_{90})
Sturm bound: 480480

Dimensions

The following table gives the dimensions of various subspaces of M2(1881,[χ])M_{2}(1881, [\chi]).

Total New Old
Modular forms 5952 1920 4032
Cusp forms 5568 1920 3648
Eisenstein series 384 0 384

Trace form

1920q+24q22144q2596q34+96q43144q46+276q4996q52+144q55+48q5896q61+240q64+192q67600q70288q76+288q85+144q88+O(q100) 1920 q + 24 q^{22} - 144 q^{25} - 96 q^{34} + 96 q^{43} - 144 q^{46} + 276 q^{49} - 96 q^{52} + 144 q^{55} + 48 q^{58} - 96 q^{61} + 240 q^{64} + 192 q^{67} - 600 q^{70} - 288 q^{76} + 288 q^{85} + 144 q^{88}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(1881,[χ])S_{2}^{\mathrm{new}}(1881, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(1881,[χ])S_{2}^{\mathrm{old}}(1881, [\chi]) into lower level spaces

S2old(1881,[χ]) S_{2}^{\mathrm{old}}(1881, [\chi]) \simeq S2new(627,[χ])S_{2}^{\mathrm{new}}(627, [\chi])2^{\oplus 2}