Defining parameters
Level: | \( N \) | \(=\) | \( 1881 = 3^{2} \cdot 11 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1881.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 16 \) | ||
Sturm bound: | \(960\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1881))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 728 | 226 | 502 |
Cusp forms | 712 | 226 | 486 |
Eisenstein series | 16 | 0 | 16 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(11\) | \(19\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(23\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(23\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(23\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(23\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(32\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(37\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(35\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(30\) |
Plus space | \(+\) | \(118\) | ||
Minus space | \(-\) | \(108\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1881))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1881))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(1881)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(99))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(171))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(209))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(627))\)\(^{\oplus 2}\)