Properties

Label 1881.4.a
Level $1881$
Weight $4$
Character orbit 1881.a
Rep. character $\chi_{1881}(1,\cdot)$
Character field $\Q$
Dimension $226$
Newform subspaces $16$
Sturm bound $960$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1881 = 3^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1881.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 16 \)
Sturm bound: \(960\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1881))\).

Total New Old
Modular forms 728 226 502
Cusp forms 712 226 486
Eisenstein series 16 0 16

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(11\)\(19\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(23\)
\(+\)\(+\)\(-\)\(-\)\(23\)
\(+\)\(-\)\(+\)\(-\)\(23\)
\(+\)\(-\)\(-\)\(+\)\(23\)
\(-\)\(+\)\(+\)\(-\)\(32\)
\(-\)\(+\)\(-\)\(+\)\(37\)
\(-\)\(-\)\(+\)\(+\)\(35\)
\(-\)\(-\)\(-\)\(-\)\(30\)
Plus space\(+\)\(118\)
Minus space\(-\)\(108\)

Trace form

\( 226 q - 4 q^{2} + 912 q^{4} - 28 q^{5} - 36 q^{8} - 40 q^{10} - 44 q^{11} - 144 q^{13} + 180 q^{14} + 3768 q^{16} + 88 q^{17} - 360 q^{20} - 160 q^{23} + 5662 q^{25} + 236 q^{26} - 864 q^{28} + 96 q^{29}+ \cdots + 116 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1881))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 11 19
1881.4.a.a 1881.a 1.a $8$ $110.983$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 209.4.a.a \(0\) \(0\) \(12\) \(-59\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(3+\beta _{2})q^{4}+(2-\beta _{1}+\beta _{5}+\cdots)q^{5}+\cdots\)
1881.4.a.b 1881.a 1.a $10$ $110.983$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 627.4.a.b \(0\) \(0\) \(1\) \(-4\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(2+\beta _{2})q^{4}-\beta _{3}q^{5}+(-1+\cdots)q^{7}+\cdots\)
1881.4.a.c 1881.a 1.a $10$ $110.983$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 627.4.a.d \(0\) \(0\) \(21\) \(10\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(2+\beta _{2})q^{4}+(2-\beta _{1}-\beta _{9})q^{5}+\cdots\)
1881.4.a.d 1881.a 1.a $10$ $110.983$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 627.4.a.c \(0\) \(0\) \(21\) \(-38\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(5+\beta _{2})q^{4}+(2-\beta _{7})q^{5}+\cdots\)
1881.4.a.e 1881.a 1.a $10$ $110.983$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 209.4.a.b \(6\) \(0\) \(10\) \(-53\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(2-\beta _{1}+\beta _{2})q^{4}+(1+\cdots)q^{5}+\cdots\)
1881.4.a.f 1881.a 1.a $10$ $110.983$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 627.4.a.a \(8\) \(0\) \(41\) \(-52\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(5+\beta _{2}+\beta _{3})q^{4}+(4+\cdots)q^{5}+\cdots\)
1881.4.a.g 1881.a 1.a $12$ $110.983$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 627.4.a.g \(-6\) \(0\) \(-49\) \(-18\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(3+\beta _{1}+\beta _{2})q^{4}+(-4+\beta _{4}+\cdots)q^{5}+\cdots\)
1881.4.a.h 1881.a 1.a $12$ $110.983$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 627.4.a.h \(-6\) \(0\) \(-29\) \(60\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(6+\beta _{2})q^{4}+(-2+\cdots)q^{5}+\cdots\)
1881.4.a.i 1881.a 1.a $12$ $110.983$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 627.4.a.f \(-6\) \(0\) \(-9\) \(46\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(6-\beta _{1}+\beta _{2})q^{4}+\cdots\)
1881.4.a.j 1881.a 1.a $12$ $110.983$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 627.4.a.e \(2\) \(0\) \(-29\) \(-4\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(3+\beta _{2})q^{4}+(-2+\beta _{4})q^{5}+\cdots\)
1881.4.a.k 1881.a 1.a $13$ $110.983$ \(\mathbb{Q}[x]/(x^{13} - \cdots)\) None 209.4.a.c \(2\) \(0\) \(-8\) \(39\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(6+\beta _{2})q^{4}+(-1+\beta _{1}-\beta _{5}+\cdots)q^{5}+\cdots\)
1881.4.a.l 1881.a 1.a $15$ $110.983$ \(\mathbb{Q}[x]/(x^{15} - \cdots)\) None 209.4.a.d \(-4\) \(0\) \(-10\) \(73\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(5+\beta _{2})q^{4}+(-1-\beta _{6})q^{5}+\cdots\)
1881.4.a.m 1881.a 1.a $23$ $110.983$ None 1881.4.a.m \(-4\) \(0\) \(-40\) \(14\) $+$ $+$ $-$ $\mathrm{SU}(2)$
1881.4.a.n 1881.a 1.a $23$ $110.983$ None 1881.4.a.n \(-4\) \(0\) \(0\) \(-14\) $+$ $-$ $+$ $\mathrm{SU}(2)$
1881.4.a.o 1881.a 1.a $23$ $110.983$ None 1881.4.a.n \(4\) \(0\) \(0\) \(-14\) $+$ $+$ $+$ $\mathrm{SU}(2)$
1881.4.a.p 1881.a 1.a $23$ $110.983$ None 1881.4.a.m \(4\) \(0\) \(40\) \(14\) $+$ $-$ $-$ $\mathrm{SU}(2)$

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1881))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(1881)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(99))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(171))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(209))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(627))\)\(^{\oplus 2}\)