Properties

Label 19.4
Level 19
Weight 4
Dimension 36
Nonzero newspaces 3
Newform subspaces 5
Sturm bound 120
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 19 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 5 \)
Sturm bound: \(120\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(19))\).

Total New Old
Modular forms 54 52 2
Cusp forms 36 36 0
Eisenstein series 18 16 2

Trace form

\( 36 q - 9 q^{2} - 9 q^{3} - 9 q^{4} - 9 q^{5} - 9 q^{6} - 9 q^{7} - 9 q^{8} - 9 q^{9} - 9 q^{10} - 9 q^{11} - 297 q^{12} - 153 q^{13} - 45 q^{14} + 99 q^{15} + 423 q^{16} + 135 q^{17} + 468 q^{18} + 369 q^{19}+ \cdots - 792 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(19))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
19.4.a \(\chi_{19}(1, \cdot)\) 19.4.a.a 1 1
19.4.a.b 3
19.4.c \(\chi_{19}(7, \cdot)\) 19.4.c.a 4 2
19.4.c.b 4
19.4.e \(\chi_{19}(4, \cdot)\) 19.4.e.a 24 6