Properties

Label 190.1
Level 190
Weight 1
Dimension 0
Nonzero newspaces 0
Newform subspaces 0
Sturm bound 2160

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 190 = 2 \cdot 5 \cdot 19 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 0 \)
Newform subspaces: \( 0 \)
Sturm bound: \(2160\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(190))\).

Total New Old
Modular forms 150 0 150
Cusp forms 6 0 6
Eisenstein series 144 0 144

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 0 0 0 0

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(190))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(190)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(38))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(95))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(190))\)\(^{\oplus 1}\)