Defining parameters
Level: | \( N \) | = | \( 190 = 2 \cdot 5 \cdot 19 \) |
Weight: | \( k \) | = | \( 1 \) |
Nonzero newspaces: | \( 0 \) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(2160\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(190))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 150 | 0 | 150 |
Cusp forms | 6 | 0 | 6 |
Eisenstein series | 144 | 0 | 144 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 0 | 0 | 0 | 0 |
Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(190))\) into lower level spaces
\( S_{1}^{\mathrm{old}}(\Gamma_1(190)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(38))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(95))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(190))\)\(^{\oplus 1}\)