Properties

Label 190.2.p
Level $190$
Weight $2$
Character orbit 190.p
Rep. character $\chi_{190}(9,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $60$
Newform subspaces $1$
Sturm bound $60$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 190 = 2 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 190.p (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 95 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(60\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(190, [\chi])\).

Total New Old
Modular forms 204 60 144
Cusp forms 156 60 96
Eisenstein series 48 0 48

Trace form

\( 60 q + 12 q^{11} - 12 q^{14} - 30 q^{15} - 48 q^{19} - 12 q^{20} + 48 q^{21} - 24 q^{25} + 6 q^{26} - 24 q^{29} - 30 q^{35} + 48 q^{39} - 6 q^{41} + 6 q^{44} + 30 q^{45} - 30 q^{49} + 24 q^{50} - 180 q^{51}+ \cdots + 198 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(190, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
190.2.p.a 190.p 95.p $60$ $1.517$ None 190.2.p.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{18}]$

Decomposition of \(S_{2}^{\mathrm{old}}(190, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(190, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(95, [\chi])\)\(^{\oplus 2}\)