Properties

Label 1900.1.e
Level 19001900
Weight 11
Character orbit 1900.e
Rep. character χ1900(1101,)\chi_{1900}(1101,\cdot)
Character field Q\Q
Dimension 33
Newform subspaces 22
Sturm bound 300300
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1900=225219 1900 = 2^{2} \cdot 5^{2} \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1900.e (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 19 19
Character field: Q\Q
Newform subspaces: 2 2
Sturm bound: 300300
Trace bound: 11

Dimensions

The following table gives the dimensions of various subspaces of M1(1900,[χ])M_{1}(1900, [\chi]).

Total New Old
Modular forms 33 3 30
Cusp forms 15 3 12
Eisenstein series 18 0 18

The following table gives the dimensions of subspaces with specified projective image type.

DnD_n A4A_4 S4S_4 A5A_5
Dimension 3 0 0 0

Trace form

3q+q7+3q9+q11+q17q192q23+q43+q47+4q49+q61+q63+q73q77+3q812q83+q99+O(q100) 3 q + q^{7} + 3 q^{9} + q^{11} + q^{17} - q^{19} - 2 q^{23} + q^{43} + q^{47} + 4 q^{49} + q^{61} + q^{63} + q^{73} - q^{77} + 3 q^{81} - 2 q^{83} + q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S1new(1900,[χ])S_{1}^{\mathrm{new}}(1900, [\chi]) into newform subspaces

Label Char Prim Dim AA Field Image CM RM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
1900.1.e.a 1900.e 19.b 11 0.9480.948 Q\Q D3D_{3} Q(19)\Q(\sqrt{-19}) None 76.1.c.a 00 00 00 11 q+q7+q9q11+q17+q192q23+q+q^{7}+q^{9}-q^{11}+q^{17}+q^{19}-2q^{23}+\cdots
1900.1.e.b 1900.e 19.b 22 0.9480.948 Q(3)\Q(\sqrt{3}) D6D_{6} Q(19)\Q(\sqrt{-19}) None 380.1.g.a 00 00 00 00 qβq7+q9+q11+βq17q19+q-\beta q^{7}+q^{9}+q^{11}+\beta q^{17}-q^{19}+\cdots

Decomposition of S1old(1900,[χ])S_{1}^{\mathrm{old}}(1900, [\chi]) into lower level spaces

S1old(1900,[χ]) S_{1}^{\mathrm{old}}(1900, [\chi]) \simeq S1new(76,[χ])S_{1}^{\mathrm{new}}(76, [\chi])3^{\oplus 3}\oplusS1new(475,[χ])S_{1}^{\mathrm{new}}(475, [\chi])3^{\oplus 3}