Properties

Label 1900.1.e
Level $1900$
Weight $1$
Character orbit 1900.e
Rep. character $\chi_{1900}(1101,\cdot)$
Character field $\Q$
Dimension $3$
Newform subspaces $2$
Sturm bound $300$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1900 = 2^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1900.e (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 19 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(300\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1900, [\chi])\).

Total New Old
Modular forms 33 3 30
Cusp forms 15 3 12
Eisenstein series 18 0 18

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 3 0 0 0

Trace form

\( 3 q + q^{7} + 3 q^{9} + q^{11} + q^{17} - q^{19} - 2 q^{23} + q^{43} + q^{47} + 4 q^{49} + q^{61} + q^{63} + q^{73} - q^{77} + 3 q^{81} - 2 q^{83} + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(1900, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1900.1.e.a 1900.e 19.b $1$ $0.948$ \(\Q\) $D_{3}$ \(\Q(\sqrt{-19}) \) None 76.1.c.a \(0\) \(0\) \(0\) \(1\) \(q+q^{7}+q^{9}-q^{11}+q^{17}+q^{19}-2q^{23}+\cdots\)
1900.1.e.b 1900.e 19.b $2$ $0.948$ \(\Q(\sqrt{3}) \) $D_{6}$ \(\Q(\sqrt{-19}) \) None 380.1.g.a \(0\) \(0\) \(0\) \(0\) \(q-\beta q^{7}+q^{9}+q^{11}+\beta q^{17}-q^{19}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(1900, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(1900, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(76, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(475, [\chi])\)\(^{\oplus 3}\)